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The aging population is steadily increasing. The World 
Health Organization (WHO) estimates that 1 in 6 people, 
or 2.1 billion, are expected to be over age 60 by 2030 (ref. 1). 

Chronological age is the major predictor for most of the diseases 
that account for the bulk of morbidity, mortality and health costs 
across low-, middle- and high-income countries2–7.

Aging progresses throughout the lifespan can be accentuated at 
etiologic sites of multiple acute and chronic diseases, including in 
children6,8–12. Indeed, fundamental aging processes can operate even 
before conception, for example, in the context of aged oocytes linked 
to Down syndrome12,13. A fundamental aging mechanism that has 
gained increasing attention is cellular senescence. Senescent cells 
accumulate during aging and at pathogenic sites of multiple disor-
ders and diseases. After the first reports of senolytic drugs (agents 
that selectively eliminate senescent cells) in 2015 (ref. 14), promis-
ing results from preclinical studies have facilitated progression to 
early-phase clinical trials evaluating the safety and efficacy of seno-
lytics, some of which have now been published (Table 1).

Fundamental aging mechanisms can be grouped into so-called 
hallmarks or ‘pillars’ of aging; these include genomic instability, 
progenitor cell exhaustion/dysfunction, telomeric and epigenetic 
changes, dysregulated protein homeostasis, altered nutrient sensing, 
mitochondrial dysfunction, altered intercellular communication, 
chronic low-grade inflammation, fibrosis, microbiome dysregula-
tion and cellular senescence3,15. The Geroscience Hypothesis holds 
that these pillars of aging, including cellular senescence, tend to 
progress in concert and may be root-cause contributors to the patho-
physiology of multiple diseases, age-related dysfunction (including 
the geriatric syndromes such as frailty, immobility, sarcopenia/
muscle wasting, mild cognitive impairment and incontinence) 
and loss of resilience (for example, decreased ability to recover 
from stresses such as injury, surgery, chemotherapy or infections 
or to mount an antibody response to immunizations)3,15–18. The 
Unitary Theory of Fundamental Aging Mechanisms builds on the 
Geroscience Hypothesis by positing that interventions targeting any 
one fundamental mechanism may target the others6. For example, 
interventions that target cellular senescence tend to attenuate other 

fundamental aging mechanisms leading to reduced inflammation, 
attenuated exhaustion of progenitors, decreased fibrosis, alleviated 
mitochondrial dysfunction and a partially restored microbiome in 
experimental animal models of aging and chronic diseases6,7,18–36.

By understanding and targeting cellular senescence and the 
other pillars of aging, rather than targeting individual diseases that 
are downstream of fundamental aging processes, it is conceivable 
that multimorbidity could be reduced and healthspan increased, 
with realization of substantial societal and economic benefits4,6.  
In this Review, we consider the potential value of senescent cells as 
a therapeutic target, the current state of senolytic drug development 
and the path to bring preventive and therapeutic strategies targeting 
senescent cells to the clinic.

Cellular senescence: mechanisms and pathways
Cellular senescence was first reported in 1961 by Hayflick and 
Moorhead after serially subculturing human fibroblasts37. Senescent 
cells, which are in a state of essentially irreversible cell cycle arrest 
but remain viable, can accumulate with aging, especially in more 
frail individuals, and at pathogenic sites of multiple disorders and 
diseases in experimental animals and humans across the lifespan. 
The senescent cell fate can be triggered by a number of stressors 
including DNA damage, cancerous mutations or oncogene activa-
tion, mitochondrial dysfunction, reactive metabolites, hyperoxia 
or hypoxia, proteotoxic stress, extracellular signals, infections, 
mechanical or shear stresses that deform cells, resistance exer-
cise and factors secreted by other senescent cells18,38–47. Many such 
stressors activate DNA damage response signaling and activation 
of the p53/p21CIP1/WAF1, p16INK4a/retinoblastoma protein or other 
pathways, resulting in cell cycle arrest and the development of a 
senescence-associated secretory phenotype (SASP)24,40,48–53 (Fig. 1). 
Through upregulation of pro-survival and antiapoptotic pathways 
such as SRC kinases, the PI3K–AKT signaling pathway, heat shock 
protein (HSP) pathways, serpines, mitochondrial pathways or apop-
tosis regulator BCL-2-related proteins, those senescent cells with a 
proapoptotic SASP can survive, despite the cytotoxic microenviron-
ment they create6,7,14,34,35,54–58.
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The senescence-associated secretory phenotype. Most cells 
undergoing senescence develop a SASP (Fig. 1). In 30–70% of 
senescent cells, this SASP entails pro-inflammatory, proapoptotic 
and pro-fibrotic factors7,31,40,59–64, some of which can cause previ-
ously non-senescent cells to become senescent both locally and 
at a distance in an endocrine manner24,39,47. This proapoptotic 
SASP can have detrimental effects both locally and systemically  

due to senescent cell accumulation and persistence24. In the 
other 30–70% of senescent cells, the SASP appears to comprise 
growth and other regenerative factors, potentially causing less 
apoptosis, tissue destruction and fibrosis than proapoptotic, 
pro-inflammatory senescent cells and can even contribute to tis-
sue repair (for example, through the growth factors VEGF-A and  
PDGF-AA)61,65.

Table 1 | Senolytic clinical trials: completed, current or planned

Study title Senolytic Study design identifier Status

targeting pro-inflammatory cells in idiopathic 
pulmonary fibrosis: a human trial

D + Q Phase 1, randomized, open-label NCt02874989 Completed63

Senescence in chronic kidney disease D + Q Phase 2, randomized, open-label NCt02848131 Current, preliminary 
report published48

Hematopoietic stem cell transplant survivors study 
(HtSS)

D + Q Randomized, open-label NCt02652052 Current

ALSENLItE: senolytics for Alzheimer’s disease D + Q Phase 1/2, open-label NCt04785300 Current

Senolytic therapy to modulate the progression of 
Alzheimer’s disease (StoMP-AD) study

D + Q Phase 1/2, open-label, pilot study
Phase 2, randomized, double-blind, 
placebo-controlled

NCt04063124 and 
NCt04685590

Current

Senolytics to improve cognition and mobility in older 
adults at risk of Alzheimer’s disease

D + Q Single-arm, open-label, pre–post 
pilot study

Pending Pending

An open-label intervention trial to reduce senescence 
and improve frailty in adult survivors of childhood 
cancer

D + Q; F Phase 2, randomized, open-label NCt04733534 Current

targeting cellular senescence with senolytics to improve 
skeletal health in older humans

D + Q; F Phase 2, randomized, open-label NCt04313634 Current

Quercetin in coronary artery by-pass surgery (Q-CABG) Q Phase 2, randomized double-blind, 
placebo-controlled

NCt04907253 Current

Use of senolytic and anti-fibrotic agents to improve 
the beneficial effect of bone marrow stem cells for 
osteoarthritis

F Phase 1/2, randomized, 
double-blind, active-control

NCt04815902 Current

Senolytic drugs attenuate osteoarthritis-related 
articular cartilage degeneration: a clinical trial

F Phase 1/2, randomized, 
double-blind, placebo-controlled

NCt04210986 Current

COVID-FISEtIN: pilot in SARS-CoV-2 of fisetin to 
alleviate dysfunction and inflammation

F Phase 2, randomized, double-blind, 
placebo-controlled

NCt04476953 Current

Alleviation by fisetin of frailty, inflammation and related 
measures in older women (AFFIRM)

F Phase 2, randomized, double-blind, 
placebo-controlled

NCt03430037 and 
NCt03675724

Current

Inflammation and stem cells in diabetic and chronic 
kidney disease

F Phase 2, randomized, double-blind, 
placebo-controlled

NCt03325322 Current

COVID-19 pilot study of fisetin to alleviate dysfunction 
and decrease complications (COVFIS-HOME)

F Phase 2, randomized, double-blind, 
placebo-controlled

NCt04771611 Current

Pilot in COVID-19 (SARS-CoV-2) of fisetin in older 
adults in nursing homes (COVID-FIS)

F Phase 2, randomized, double-blind, 
placebo-controlled

NCt04537299 Current

targeting senescence to reduce osteoarthritis pain and 
cartilage breakdown (ROPE)

F Phase 1/2, randomized, 
double-blind, placebo-controlled

NCt04770064 Current

Senolytic agent improve the benefit of platelet-rich 
plasma and losartan

F Phase 1/2, randomized, 
double-blind, placebo-controlled

NCt05025956 Current

Safety and tolerability and long-term follow-up studies 
of patients with osteoarthritis of the knee treated with 
UBX0101 or placebo

UBX0101 
(nutlin-3a 
or related)

Phase 2, randomized, double-blind, 
placebo-controlled

NCt03513016 and 
NCt04349956

Completed; failed 
to achieve primary 
endpoint

A study to assess the safety and efficacy of a single or 
repeat doses of UBX0101 in patients with osteoarthritis 
of the knee

UBX0101 
(nutlin-3a 
or related)

Phase 1, randomized, double-blind, 
placebo-controlled
Phase 2, randomized, double-blind, 
placebo-controlled

NCt04229225 and 
NCt04129944

Current

Safety and tolerability study of UBX1325 in patients with 
diabetic macular edema or neovascular age-related 
macular degeneration

UBX1325  
(N or 
related)

Phase 1, open-label
Phase 2, randomized, double-blind, 
sham-controlled

NCt04537884 and 
NCt04857996

Current

D + Q, dasatinib and quercetin; F, fisetin; N, navitoclax; Q, quercetin.
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If senescent cells are present transiently, beneficial functions of 
both the proapoptotic and pro-growth types of SASP can orchestrate 
tissue remodeling (during fetal development, growth of younger 
individuals, and after cell or tissue damage), induce immune 
responses during infections or tissue injury, promote parturition by 
SASP factors released by placental senescent cells, and induce clear-
ance of those senescent cells with a pro-inflammatory SASP because 
they attract, anchor and activate immune cells10,11,14,61,62,65.

Adverse impacts of persistent, proapoptotic SASP-expressing 
senescent cells. Normally, senescent cells appear to be cleared 
within days to weeks after they develop by natural killer cells and 
other immune cell types62,66–69. However, if a threshold burden of 
senescent cells is exceeded, senescent cells can accumulate, perhaps 
because proapoptotic SASP-expressing senescent cells induce para-
crine and endocrine spread of senescence at a rate exceeding immune 
clearance of preexisting and newly formed senescent cells24,62  
(Fig. 2). Once senescent cell burden surpasses this threshold, con-
tinuing increases in proapoptotic/pro-inflammatory senescent cell 
burden may contribute to tissue destruction and hence develop-
ment or progression of multiple diseases and age-related disorders 
(Table 2) as well as immune dysregulation, further amplifying senes-
cent cell accumulation in a feed-forward loop36,38,62. Although not 
every senescent cell develops a proapoptotic, inflammatory SASP, 
accumulation and persistence of such senescent cells can induce a 
chronic low-grade, pro-fibrotic inflammatory state (usually associ-
ated with aging and chronic diseases), known as ‘inflammaging’70. 
This sterile inflammatory state can provoke dysfunction of neigh-
boring and distant non-senescent cells, such as progenitor cells, 
contributing to impaired tissue function and reduced regenerative 
capacity18,21,24,26,34. Consistent with this, persistence of senescent cells 
has been implicated in causing disorders related to tissue inflam-
mation, fibrosis and extracellular matrix degradation, adipose  

tissue insulin resistance, reduced muscle hypertrophy after resis-
tance exercise and impaired fracture repair in older individuals, as 
well as promoting malignant transformation6,18,22,23,48,71–77.

The SASP of senescent cells is not static; it can change over  
time78–80 and varies depending on the type of cells that became senes-
cent and how senescence was induced16,44,59,60,81. The intracellular 
and extracellular environment can modulate which SASP factors are 
produced and their abundance. Persistent senescent cells appear to 
be highly responsive to extracellular cues, such as damage-associated 
molecular patterns (DAMPs) and pathogen-associated molecu-
lar patterns (PAMPs), which can exacerbate the proapoptotic, 
pro-inflammatory qualities of the SASP16. For example, in the case 
of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
infection, some of these extracellular cues are mediated through 
Toll-like receptor 3 and angiotensin converting enzyme-2, con-
tributing to coronavirus disease 2019 (COVID-19) morbidity44,82. 
Intracellular cues can exacerbate damaging, pro-inflammatory 
properties of the SASP several weeks or months after senescence has 
been induced. These include retrotransposable elements (for exam-
ple, LINE-1), cytosolic mitochondrial DNA, or circular DNA—all 
of which can activate the cytosolic DNA-sensing (cGAS)–STING 
pathway, triggering the expression of pro-inflammatory genes79–81.

discovery and development of senolytic drugs
The first senolytic drugs were identified using a hypothesis-driven, 
mechanism-based drug discovery approach (Fig. 3). Because 
those 30–70% of senescent cells that have a proapoptotic, tissue- 
destructive SASP are themselves resistant to apoptosis, it was 
hypothesized that such senescent cells depend on antiapoptotic, 
pro-survival pathways to avoid self-destruction14,83. Analysis of pro-
teomic and transcriptomic datasets revealed there is indeed upregu-
lation of one or more senescent cell antiapoptotic pathways (SCAPs) 
in senescent cells. SCAP pathways are similar to those that protect 
certain types of cancer cells, such as B cell lymphoma or chronic 
lymphocytic leukemia cells, which also release tissue-destructive 
proapoptotic factors but evade undergoing apoptosis themselves84,85. 
Transiently disabling SCAP pathways results in apoptosis of the 
senescent cells with a tissue-destructive SASP, while non-senescent 
cells or those senescent cells with a pro-growth, non-apoptotic 
SASP remain viable (U. Tripathi, S.C., L.G.P.L. Prata, T.T. and J.L.K.,  
unpublished data).

Bioinformatic analyses identified 46 compounds that target 
SCAP pathways as being potentially senolytic14. The first senolytic 
agents intentionally selected for further investigation were ones that: 
(1) target several SCAPs, rather than adhering to the traditional 
drug development approach of one drug/one molecular target/one 
disease, (2) can be administered orally, and (3) are natural products 
with known safety profiles or are already approved by the US Food 
and Drug Administration (FDA) for other indications, to facilitate 
translation from bench to bedside. These included the SRC/tyrosine 
kinase inhibitor dasatinib (D), which has been approved and exten-
sively used since 2006 and has a quite good safety profile, and the 
natural flavonoids quercetin (Q) and fisetin (F), which are present 
in fruits and other foods14,86.

In some types of senescent cells, SCAPs can be redundant, so 
that targeting a single SCAP may not eliminate such cells—but com-
bination treatment targeting multiple SCAPS may be effective. As 
an example, senescent mesenchymal embryonic fibroblasts from 
Ercc1−/− mice and bone marrow mesenchymal progenitors from old 
mice are not eliminated by either D or Q alone, but are eliminated by 
the combination of these agents14. Consistent with the heterogeneity 
of SCAPs across different senescent cell types, senescent human fat 
cell progenitors (preadipocytes or mesenchymal stromal cells) are 
sensitive to D but not Q or F, while senescent human umbilical vein 
endothelial cells are sensitive to Q or F but not D14. Since the first 
SCAPs were discovered, others have been identified and, based on 
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Fig. 1 | Senescence-associated secretory phenotype. the SASP is a key 
feature of cellular senescence. Cellular stressors induce DNA damage 
response signaling, which activates key transcription factors and pathways 
including NF-κB, CCAAt/enhancer binding protein-β (C/EBPβ), GAtA 
binding protein 4 (GAtA4), p38 and JAK–StAt, which can drive and 
modulate the SASP31,48,60,63,64,103,157,214–218. the various forms of the SASP can 
comprise chemokines, extracellular matrix proteases, remodeling factors, 
bioactive lipids, noncoding nucleotides and reactive metabolites7,31,59–64. 
IL-6, interleukin-6; ROS, reactive oxygen species; tGF-β, transforming 
growth factor beta; tIMPs, tissue inhibitors of metalloproteinases; tNF, 
tumor necrosis factor.
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these, more senolytic strategies have been developed. For example, 
forkhead box O4 (FOXO4) retains p53 in the nucleus, so peptides 
interfering with this interaction can lead to p53-mediated apoptosis 
in some types of senescent cells87. HSP90 prevents proteasomal deg-
radation of AKT, hence inhibiting HSP90 disables pro-survival sig-
naling through this SCAP node and results in elimination of some 
senescent cell types54. Consistent with this, certain HSP90 inhibiting 
drugs, such as geldanamycin, are senolytic against particular senes-
cent cell types.

In some cases, senolytic compounds that target a single SCAP 
node, such as the BCL-2 pathway inhibitors, N (ABT-263), 
A1331852 or A1155463, tend to induce apoptosis in a restricted 
range of senescent cell types57,86. However, it is worth noting that 
N can cause thrombocytopenia and neutropenia, even after brief 
exposures57,88–91; this raises the question of whether agents that tar-
get a single molecular pathway have a greater risk of toxicity due to 
off-target effects associated with the high dosing required to fully 
suppress a single SCAP node. Perhaps by using agents or combina-
tions that ‘lightly’ impact a number of nodes, it may be feasible to 
target a broader range of senescent cell types while using lower doses 
of each agent, thereby potentially improving the side-effect profiles 
of these agents. The latter approach has been used to improve toler-
ability of antibiotic treatments, for example.

Second-generation senolytics are now being identified 
using high-throughput library screens and other approaches54. 
One approach stems from the increase in lysosomal mass and 
senescence-associated β-galactosidase activity in many senescent 
cells, whereby galacto-oligosaccharide-coated nanoparticles and 
β-galactosidase-activated prodrugs appear to eliminate at least some 
of these cells92,93. Another approach is based on the high lysosomal 
activity of some senescent cells that renders them sensitive to lyso-
somal ATPase inhibitors94. Due to ruptured lysosomal membranes, 
at least some senescent cells depend on glutamine metabolism as a 
pH-buffering system, inhibition of which renders them vulnerable 
to apoptosis95.

Other strategies for decreasing age-related senescent cell burden 
and pathologic conditions involve modulating immune clearance 
of senescent cells62. Certain cell surface proteins tend to be more 
highly expressed by senescent cells than most other cell types, which 
prompted development of engineered chimeric antigen receptor 

(CAR) T cells, vaccines and antibody–drug conjugates targeting 
these cell surface markers. Each of these approaches eliminates 
senescent cells, although in some cases, activated macrophages 
and other non-senescent cell types are also affected96–99. It is not 
yet clear if these approaches eliminate primarily those senescent  
cells with a proapoptotic, inflammatory, tissue-destructive SASP, 
those with a mainly growth-promoting SASP, or both forms of 
senescent cells. A possible advantage of small-molecule senolytics 
over vaccines or transplanted CAR T cells is that if a need for senes-
cent cells occurs, for example, during wound healing, tissue remod-
eling or pregnancy, then treatment can be discontinued—whereas 
the continued elimination of senescent cells induced by vaccines 
or CAR T strategies may not readily be switched off. Furthermore, 
CAR T cell therapy is expensive, generally has to be specifically 
formulated for each individual being treated, and can lead to graft 
versus host disease, necessitating prolonged immunosuppressive 
therapy with all its attendant risks.

It should be noted that in commonly used preclinical models, 
senescence is abolished by means of p16INK4a-based or p21CIP1/WAF1- 
based genetic clearance and this senescence-targeting approach 
acts through mechanisms that are distinct from first-generation, 
SCAP-targeting small-molecule senolytics; as a result, there appear 
to be differences in the types of senescent cells targeted. For exam-
ple, cell types such as activated macrophages, which may not be 
classically senescent, can have high p16INK4a expression100, but are 
not targeted by D + Q24. Unpublished work from our own labora-
tory suggests that there may be differences in the phenotypic effects 
(such as those relating to wound healing and healthspan) of tar-
geting senescent cells in transgenic mice compared to the effects 
of senolytic agents in wild-type mice. This is in agreement with a 
recent report showing that the removal of senescent cells express-
ing high levels of p16INK4a can lead to fibrosis in mice101, whereas 
small-molecule senolytics appear to reduce fibrosis in several 
mouse tissues22,71,73,75,102. Indeed, work to develop senolytics began 
before genetic models of senescent cell clearance were published 
and did not depend on those models34,56. These genetic models 
have been useful in pinpointing those cells expressing particular 
senescence-linked markers (for example, p16INK4a or p21CIP1/WAF1) 
and as complementary tools in senolytic proof-of-concept studies 
(Table 2). However, given their inability to eliminate the naturally 
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Fig. 2 | The threshold theory of senescent cell accumulation. this theory postulates that once senescent cell burden exceeds a threshold, self-amplifying 
paracrine and endocrine spread of senescence through the SASP outpaces clearance of senescent cells by the immune system34,219. Additionally, increased 
abundance of SASP factors may impede immune system function62,78, further amplifying accumulation of senescent cells. Senescent cell accumulation may 
also accelerate other fundamental aging mechanisms. In studies of effects of transplanting senescent versus non-senescent cells into middle-aged mice, a 
minimum number of transplanted senescent cells was necessary to cause accelerated aging-like phenotypes24. In conditions in which senescent cell burden 
is already high, such as obesity, fewer senescent cells need to be transplanted to induce the same effect as in lean mice of the same age23,24,151. Consistent 
with this, in human childhood cancer survivors who have had DNA-damaging anticancer therapy, a subsequent accelerated aging-like phenotype can 
occur at a considerably earlier age than in older individuals who do not have a history of childhood cancer treatment169. Hence, senescent cells with 
a proapoptotic, inflammatory SASP may need to exceed a threshold to exert detrimental effects. Systemic clearance of senescent cells by genetic or 
pharmacologic means tends to attenuate the other pillars of aging and can delay, prevent or alleviate multiple age-related disorders and diseases23,24,30,49.
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Table 2 | disorders and diseases linked to senescent cell accumulation and alleviated by senolytics in preclinical models

disorders and diseases Genetic model Pharmacologic agent Phenotype of intervention

Diabetes/obesity/age-related 
lipodystrophy23,25,42,48,144–152

PLD145

INK-ATTAC23,25,150

p16-3MR25

D + Q25

N150

Improved metabolic and adipose tissue function23,25,145,150,  
reduced inflammation25, improved adipogenesis25, improved beta  
cell function150

Cardiac dysfunction14,26,153–159 INK-ATTAC26,157–159

p16-3MR159

Q153

N155–157,159

D + Q14,26,158

Activation of resident cardiac progenitor cells and cardiomyocyte 
formation26, alleviated myocardial hypertrophy and fibrosis155,157, 
improved left ventricular ejection fraction14,155, increase in myocardial 
vascularization155, increased survival after myocardial infarction156

Vascular hyporeactivity/calcification/
arteriovenous fistulae158,160

INK-ATTAC158 D + Q158,160 Improved vasomotor function, reduced aortic calcification158

Frailty/sarcopenia/muscular dystrophy/ 
fibrodysplasia14,24,49,71,124,161–164

PLD49

INK-ATTAC24,71

N163

F124

D + Q14,24,71

Improved and delayed age-associated physical dysfunction14,24,49,71,163, 
extended median and maximum lifespan124

Age-related impairment of muscle hypertrophy 
after resistance exercise18

NA D + Q18 Improved muscle growth18

Response to and sequelae of chemotherapy/
radiation9,14,24,71,87,88,165–169, cancers24,168,170–172,  
bone marrow transplantation169

p21-ATTAC165

INK-ATTAC24,71

p16-3MR88,168

D + Q14,24,71

N88,167,168

FOXO4-DRI87

Prevented radiation-induced osteoporosis165, alleviated physical 
dysfunction24,87,167, reduced adverse effects of chemotherapy or 
radiation71,88,167,168, rejuvenation of aged tissue progenitor cells 
following radiation88

Sequelae of organ transplantation31,74,145,173–176 NA D + Q31,145 Prolonged survival of old cardiac allografts31, mitigated insulin 
resistance following xenotransplantation145

Age-related cognitive impairment/
Alzheimer’s/ Parkinson’s/ALS/
anxiety27,30,33,177–183

p16-3MR177,182

INK-ATTAC30,33,181

N177,181

D + Q27,30,33,178,180

Activation of neural progenitor cell proliferation and neurogenesis33,177, 
enhanced spatial memory177, reduced microglial activation30,  
improved cognitive function180,181, alleviated anxiety-related behavior33, 
reduced tau aggregation27,181, improved learning and memory178, 
improved cognitive function30,178, reduced neuroinflammation180, 
reduced Aβ load180

Renal dysfunction87,102,184–186 INK-ATTAC185 N186

D + Q185

Q102

FOXO4-DRI87

Improved renal function87,185,186, reduced damage102 and fibrosis102,185,186

Osteoporosis/osteoarthritis/rheumatoid 
arthritis/intervertebral disc disease/fracture 
healing21,176,187–192

p16-3MR190,191

INK-ATTAC21

D + Q21,188

UBX0101 (nutlin-3a or 
related)191

Attenuated the development of osteoarthritis191, reduced pain and 
increased cartilage development191, higher bone mass and strength 
and better bone microarchitecture21, attenuated age-dependent 
intervertebral disc degeneration190

COPD/IPF/tobacco/hyperoxic lung damage/
pulmonary arterial hypertension63,71,193–199

INK-ATTAC71 N193

Digoxin194

D + Q71

Improved pulmonary function71 and reduced fibrosis194

Hepatic steatosis/cirrhosis/primary biliary 
cirrhosis22,75,200

INK-ATTAC75 A133185222

D + Q75

Reduced hepatic steatosis75 and liver fibrosis22

Progerias87,124 INK-ATTAC201 F124

FOXO4-DRI87

Delayed onset and progression of age-related pathologies87,124,201

Intestinal inflammation/microbiome32 NA D + Q32 Reduced inflammation and microbial dysbiosis32

Preeclampsia/uterine fibrosis/ovarian 
involution/vaginal dysplasia73,202,203

NA D + Q73 Reduced fibrosis73

Cataracts/macular degeneration/glaucoma/
ocular hypertension/diabetic retinopathy204–211

INK-ATTAC204

p16-3MR206

D206

UBX1967 (N or 
related)204

Prevented loss of retinal function and cellular structure206

Progenitor growth, activation or 
differentiation21,23,25,26,30,33,154,177,203

p16-3MR25,177

INK-ATTAC21,23,25,26,30,33

N177

D + Q21,25,26,30,33

Increased neural precursor cell30,33,177/cardiac progenitor cell 
proliferation26, improved proliferative and differentiation potential 
of adipocyte progenitor cells23,25, enhanced osteoblastic progenitor 
function21

Lifespan/healthspan24,55,124,201 INK-ATTAC24,201 Procyanidin C1 (ref. 55)
F124

D + Q24

Delayed onset and progression of age-related pathologies, reduced 
frailty24,55,124,201, increased maximum lifespan124

COVID-19 (refs. 16,44,45,47) INK-ATTAC16 N45,47

D + Q16,45

F16

Reduced mortality16, reduced inflammation16,45,47, increased antiviral 
antibodies16

Down syndrome13,212 NA D + Q13 Alleviated transcriptional, molecular and cellular dysfunction13

Skin disorders/chronic wound healing213 NA D + Q, F (publications in 
preparation)

Studies underway

ALS, amyotrophic lateral sclerosis; COPD, chronic obstructive pulmonary disease; FOXO4-DRI, forkhead box O transcription factor 4-d-retro-inverso; INK-ATTAC, p16Ink4a apoptosis through targeted 
activation of caspase; NA, not assessed; p16-3MR, p16Ink4a-trimodality reporter; p21-ATTAC, p21Cip1/Waf1 apoptosis through targeted activation of caspase; PLD, p21-Cre/+;LUC (floxed loxP-flanked StOP 
cassette between a Gt(ROSA)26Sor promoter and firefly luciferase)/DtA (floxed-StOP cassette followed by diphtheria toxin A driven by ROSA promoter) mice. Adapted from ref. 34. Selected references, 
but not all publications, are cited.
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occurring heterogeneous senescent cell pool (that is, elimination of 
both p16INK4a-expressing or p21CIP1/WAF1-expressing cells or senescent 
cells that express neither) and the fact that also non-senescent cells 
such as activated macrophages are targeted100, these genetic models 
are of limited use to assess the translational potential of senolytic 
agents—but are useful for mechanistic insights nonetheless.

SaSP inhibitors
Suppressing the SASP without eliminating senescent cells is an 
alternative therapeutic approach for alleviating cellular senescence- 
related phenotypes or diseases. SASP inhibitors (senomorphics) can 
directly or indirectly attenuate the SASP of senescent cells by inhib-
iting transcription factor nuclear factor (NF)-κB, the JAK–STAT 
signal transduction pathway, the serine/threonine protein kinase 
mTOR, mitochondrial complex-1-related or 4-related targets, or 
other pathways involved in the induction and maintenance of the 
SASP103–106. In vitro and in vivo, inhibitors of NF-κB (mediating 
the cell response to inflammation), can reduce pro-inflammatory 
SASP cytokines and chemokines104. In addition, an RNA-mediated 
interference screen revealed that targeting alternative splicing in 
senescent cells may be a viable approach for inhibiting the SASP107. 
Rapamycin and its analogs (so-called ‘rapalogs’) suppress the SASP 
by inhibiting mTOR and appear to extend healthspan and lifespan in 
mice105,108,109. The antidiabetic drug metformin, which, among other 
activities, inhibits the SASP, alleviates several age-related conditions 
and chronic diseases110–114. A clinical trial (TAME, Targeting Aging 
with Metformin) is planned to test if metformin delays the time for 
a second age-related disease to occur in patients who already have a 
single age-related condition115.

advantages and disadvantages of senolytics versus  
SaSP inhibitors
There are important differences between SASP inhibitors and 
senolytics. Whereas SASP inhibitors potentially suppress both 
the growth-promoting as well as the proapoptotic, inflamma-
tory, tissue-destructive sets of SASP factors, the first-generation 
senolytics target the underlying cause of detrimental SASP factor 
production by eliminating those senescent cells that release pro-
apoptotic factors. In the case of SASP inhibitors, continuous treat-
ment is needed to maintain suppression of the SASP, although some 
agents, such as rapamycin, can have prolonged effects after a brief 
course of administration116,117. This may be a result of inhibiting 
SASP-mediated spread of senescence, thereby allowing the innate 
and adaptive immune system to further reduce senescent cell bur-
den, consistent with the Unitary Theory (Fig. 2). With senolytics, 
intermittent administration appears to be as effective as continuous 
treatment for attenuating senescent cell burden21. This intermittent 
‘hit-and-run’ strategy of senolytic administration could serve to 
reduce side effects of agents such as D, which generally appear after 
weeks to months of continuous administration118,119. In this regard, 
the advantages of D, Q or F over some other senolytics are their brief 
half-lives (4, 11 or 3–4 h, respectively, in humans) and rapid elimina-
tion120–122. The greater need for continuous administration of SASP 
inhibitors could lead to more side effects than seen with intermit-
tently dosed senolytics and could also lead to off-target effects due 
to suppression of cytokine secretion—even when such cytokines are 
needed—by non-senescent cells such as innate or adaptive immune 
cells. Furthermore, some SASP inhibitors can have agent-specific 
off-target effects, for example, rapamycin, which can cause neph-
rotoxicity, metabolic impairment and susceptibility to infections, at 
least at higher doses in mice109.

Senolytics cause SASP-expressing senescent cells to undergo 
apoptosis, and such senescent cells are present at sites of dysfunc-
tion. Interestingly, a study involving transplanted mesenchymal 
stromal cells, which have therapeutic effects in a wide range of 
disease models, may hint at a possible mechanism for the ben-
eficial effects of senolytic-induced apoptosis. The study suggested 
that apoptosis of mesenchymal stromal cells is required for their 
therapeutic effects, possibly by means of downstream immunosup-
pressive effects of apoptotic processes123. This raises the intrigu-
ing hypothesis that senolytic-induced apoptosis of destructive 
SASP-expressing senescent cells, which are concentrated at sites of 
pathology, might contribute to the beneficial effects of senolytics, 
which has not been directly tested in preclinical models in currently  
available reports.

Consideration of the different cell populations affected by 
senolytic and SASP inhibitor interventions, whether expressing 
a detrimental tissue-destructive or beneficial pro-growth factor 
secretory phenotype, is crucial to the successful development of 
senotherapeutic interventions61. Elimination of all senescent cells 
or general inhibition of the SASP might be detrimental in some 
instances in which senescent cells are beneficial. However, interven-
tions that predominantly target the persisting, tissue-destructive 
SASP-expressing senescent cells might have superior therapeutic 
potential and fewer off-target effects.

Senolytics in preclinical models
First-generation senolytics, such as D + Q, have been tested in sev-
eral preclinical models of aging and diseases, including type 2 dia-
betes, and bone, heart, kidney, liver, lung, muscle and neurological 
disorders (Table 2). Whereas transplanting senescent cells decreases 
healthspan and lifespan in preclinical models, eliminating trans-
planted or endogenous senescent cells increases healthspan, thereby 
fulfilling Koch’s postulates for causality24,124.

In mouse models of diet-induced obesity, reducing the bur-
den of senescent cells in adipose tissue by administering D + Q 

Senescence-specific
membrane proteins

SASP

Na+/K+

ATPase
pump

Lysosomes

Apoptosis

FOXO4-DRI

p53-FOXO4

Survival

AKT

Pl3K

SRC

HSP90

Proteasome

Mitochondria

BCL-2 family

BAX/BAK

Caspase activation

Cardiac
glycosides

Nanoparticles/
prodrugs

Quercetin
Fisetin

Luteolin
Enzastaurin

Navitoclax
A1331852
A1155463
Procyanidin C1

Dasatinib

Piperlongumine

Geldanamycin
Tanespimycin
Alvespimycin 
(17-DMAG)
Ansamycin
Resorcinol
Purine- and 
pyrimidine-
like N-terminal 
inhibitors

TKR/GFR/EFNB1

CAR-T/vaccine

Senomorphics

Fig. 3 | First- and second-generation senolytic strategies. First-generation 
senolytics target different SCAPs, including tyrosine kinase receptors 
(tKRs), growth factor receptors (GFRs), ephrin receptor B1 (EFNB1), SRC 
kinases, PI3K–AKt, HSP90, BCL-2 family members, caspase inhibition 
and p53 modulation14,54,57,86–88. High-throughput library screens and other 
approaches have informed second-generation senolytic strategies, including 
lysosomal and SA-β-gal-activated prodrugs and nanoparticles54,92,93,220, 
sodium–potassium pump (Na+/K+-AtPase)-dependent apoptosis194,221, 
SASP inhibition103–106 and immune-mediated clearance by CAR t cells, 
antibody–drug conjugates or vaccines62,96–99.
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attenuates adipose tissue inflammation, alleviates metabolic dys-
function, and restores the capacity of preadipocytes to differenti-
ate into functional, mature, insulin-responsive fat cells25. High-fat 
diets (HFDs) and obesity result in senescent cell accumulation 
and lead to impaired function of multiple organs. For example, 
HFD-induced senescent mouse kidney cells are linked to renal 
fibrosis and functional impairment; Q treatment reduces senescent 
cell burden and SASP marker expression, alleviates renal fibrosis 
and improves kidney function102. In livers of HFD-fed mice, oral 
D + Q reduces the burden of senescent hepatocytes and hepatic ste-
atosis75. Obesity also leads to accumulation of senescent cells near 
the third ventricles of the murine brain, together with development 
of neuropsychiatric dysfunction, particularly anxiety, which results 
from altered function of the limbic system situated near the third 
ventricles. Oral D + Q reduces this neuroinflammation, increases 
markers of neurogenesis, reduces gliosis and alleviates anxiety in 
obese mice33. Fibrosis can be a senescence-driven progressive pro-
cess that contributes to reduced organ function; in a mouse model 
of idiopathic pulmonary fibrosis (IPF), D + Q treatment improved 
lung compliance and reduced frailty71. In age-related osteoporosis 
linked to senescent-like osteocytes and bone marrow cells in mice, 
D + Q reduced development of bone-resorbing osteoclasts, while 
increasing differentiated bone-forming osteoblasts, with restoration 
of bone mass21. After resistance exercise, senescent cells develop 
in muscle of old mice in tandem with impaired exercise-induced 
muscle hypertrophy compared to young mice18. D + Q alleviates this 
negative impact of aging on muscle growth. Recently, senescent cells 
have been implicated in accentuating the severity of viral infections 
due to amplification of SASP factor secretion, predisposing to cyto-
kine storm and multi-organ failure. In mice infected with a murine 
coronavirus, the mortality rate was reduced following administra-
tion of D + Q or F16.

Transplanted senescent cells or organs from old mice have been 
shown to spread the senescent phenotype to distant sites in recipi-
ent mice, predisposing to detrimental outcomes after transplan-
tation24,31. D + Q treatment of either old donor mice, the organs 
harvested from the old donors before transplantation, or the recipi-
ents, led to decreased senescent cell burden and increased survival 
of recipient mice – so that outcomes resembled those observed in 
mice receiving a transplant from a young donor31. Hence, a potential 
new application of senolytics may entail ex vivo perfusion of organs 
from older donors that are currently being discarded because of 
increased risk of organ failure or allograft rejection, potentially off-
setting shortages of organs for transplantation125.

A recent study implicated cellular senescence and the beneficial 
effects of senolytics for Down syndrome (trisomy 21)13. A third 
copy of chromosome 21 in neural progenitor cells leads to tran-
scriptional and nuclear organizational changes similar to those 
in senescent cells. Interestingly, D + Q alleviated transcriptional 
changes and cellular dysfunction in an in vitro human neural cell 
Down syndrome model. An accelerated aging-like phenotype has 
been observed in astronauts who are exposed to radiation, high 
G-forces, zero gravity and cabin air quality126. Thus, senolytics 
might support long-distance space exploration by eliminating the 
senescent cells caused by cosmic and solar radiation, especially out-
side the van Allen radiation belts. In April 2022, effects of space 
travel on senescence biomarkers in astronauts and cultured human 
fat cell progenitors were tested during the Axiom-1 mission to the 
International Space Station; data are pending127.

Systemic versus local administration
According to the threshold theory of cellular senescence, senes-
cent cells can be present without clinical manifestations but, if their 
abundance exceeds a threshold, senescent cell burden can increase 
further and contribute to development of local and systemic dys-
function and multiple diseases (Fig. 2). Senescent cells can spread 

even to distant sites because of their SASP; therefore, systemic, 
intermittent administration of senolytics for senescence-associated 
diseases is potentially more promising than local administration, 
with the exception of perhaps eye, skin or dental topical or other 
local applications34. Perhaps there may not need to be strict cell type 
specificity of senolytics administered in vivo. Arguably, once sys-
temic senolytic treatment has reduced overall senescent cell burden 
to below a threshold, the immune system might clear remaining 
senescent cells, including those resistant to that particular senolytic. 
This could be especially important for older individuals or those 
with chronic diseases, who already have a high systemic senescent 
cell burden24,128. Strategies for systemic senolytic administration 
include oral or intravenous routes, with orally active senolytics gen-
erally being more accepted by patients and less expensive to admin-
ister. The timing, the particular senolytic agent used, and the age, 
sex, and other characteristics of the individual may impact effective-
ness of senolytics24. For example, F may be beneficial but D detri-
mental in healthy young female mice that have not yet accumulated 
many senescent cells129.

Clinical trials and future directions
Based on promising results in preclinical models, over 20 clinical 
trials of senolytic therapies are completed, ongoing or planned34 
(Table 1). Because side effects of senolytics in humans are not yet 
fully known, and to maximize benefit–risk ratios, the first clinical 
trials are underway in patients with serious health conditions, such 
as diabetic kidney disease, Alzheimer’s disease, frailty and IPF34. The 
first in-human trial of senolytics (D + Q), the Hematopoietic Stem 
Cell Transplant Survivors Study, is still underway (NCT02652052; 
first patient dosed on 1 April 2016). The first senolytic clinical 
trial published was an open-label pilot study in which 14 patients 
with IPF were treated with intermittent D + Q on 3 d per week for  
3 weeks63. Results suggested that senolytics improved physical func-
tion in these frail patients. Furthermore, post hoc analysis of a study 
involving 20 patients with IPF showed that urine levels of the ‘gero-
protective’ factor α-Klotho were higher after oral D + Q than before 
treatment19. In an open-label phase 1 pilot study in 9 patients with 
diabetic kidney disease, a 3-d course of oral D + Q was sufficient to 
decrease adipose tissue senescent cell burden, inflammation, fibro-
sis and circulating SASP factors for at least 11 d after the last dose 
of senolytics, indicating target engagement and suggesting that an 
intermittent dosing regimen may be effective in humans48. These 
early data warrant evaluation in larger randomized, double-blind, 
placebo-controlled trials for senescence-associated disorders and 
diseases, some of which are underway34 (Table 1).

It should be noted that a phase 2, randomized, double-blind, 
placebo-controlled clinical trial (NCT04349956)—in which the 
senolytic agent was a p53-destabilizing protein MDM2 inhibitor, 
UBX0101 (also known as nutlin-3a)—did not achieve its primary 
endpoint of improving pain in patients with osteoarthritis of the 
knee in a 12-week follow-up. In our hands and others, nutlin-3a 
does not show or shows only weak senolytic activity and, in some 
cases, can even induce cellular senescence95,130. Furthermore, in a 
mouse model of osteoarthritis, a combination of UBX0101 with N 
was necessary to restore aged joint structure131. Thus, the failure of 
this clinical trial seems related to the particular agent administered, 
which may not have been a fully effective senolytic.

Biomarkers of senescent cell burden and senolysis: gerodiag-
nostics. Identification and monitoring of senescent cell burden 
in situ, especially during clinical trials to assess safety and efficacy, 
can be challenging if solely based on analysis of tissue biopsies 
given the contextual and complex regulation of the senescent cell 
fate. However, SASP factors, senescence markers and markers of 
other fundamental aging processes (for example, α-Klotho) can be 
assayed in body fluids such as urine, saliva, blood or cerebrospinal  
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fluid7,19,48,59,61,64,132,133. Additionally, ongoing efforts are underway 
to identify and define biomarkers of senescent cell accumulation 
(senescence biomarkers) and destruction of senescent cells dur-
ing senolytic treatment (senolysis biomarkers) that meet require-
ments of regulatory authorities. Panels of SASP factors and senolysis 
markers for clinical trials and, ultimately, clinical practice will be 
important as diagnostics/predictors for multiple disorders and 
diseases, monitoring target engagement and individualizing seno-
lytic regimens for patients. Indeed, to facilitate developing inter-
ventions targeting fundamental aging processes and for eventual 
use in clinical practice, such indicators will need to be more than 
mere ‘biological clocks’. Indicators are needed that are reproduc-
ible, reliable, feasible and inexpensive to measure, and reflect not 
only biological age, but also correlate with clinical function and/
or disabilities. These should also change in response to interven-
tions, predict or reflect changes in clinical function caused by these 
interventions, and indicate which senolytic or SASP inhibitor may 
be best for an individual. Such biomarkers or composite scores of 
biomarkers are known as ‘gerodiagnostics’. Indeed, the first gerodi-
agnostic score sensitive to senolytic administration in humans was 
a blood composite score published in 2019 (ref. 48). Additionally, 
we propose the concept of ‘gerodiagnostic ratios’, whereby gerodi-
agnostic indicators that increase with aging or disorders linked to 
acceleration of fundamental aging mechanisms, could be summed 
into a composite in the numerator (for example, markers of senes-
cent cells, SASP factors, CD38 and mTOR activity indicators), while 
beneficial geroprotective factors (for example, α-Klotho or perhaps 
nicotinamide adenine dinucleotide (NAD+) or Sirt-6) could be in 
the denominator. This approach could both enhance sensitivity and 
reduce ‘denominator effects’; for example, creatinine is often used as 
a dominator for urine analytes, introducing the confounding vari-
able of muscle mass, upon which creatinine levels depend.

Clinical trajectory for the next decade. Large, randomized con-
trolled trials to assess and ensure safety, benefit and target engage-
ment of senolytics are needed to validate preliminary results from 
early-phase clinical trials (Table 1). If safety and effectiveness of 
senolytics are first demonstrated in patients with serious diseases for 
which current treatments are inadequate, it could become accept-
able to test them for less severe senescence-linked disorders. If safe 
and effective for such conditions, senolytics might then be tested 
for prevention of age-related dysfunction and diseases in older indi-
viduals, using a strategy like that which is planned for metformin in 
the TAME study115. TAME will test if metformin delays the appear-
ance of a second age-related disorder in patients who already have 
one such disorder; it will not be a trial including completely healthy 
older adults115. If attempts to extend human healthspan are effective, 
future studies might conceivably aim to evaluate the role of seno-
lytic therapies in extending human lifespan.

Combination therapeutic strategies. Clinical studies of gerosci-
ence interventions targeting the other pillars of aging are currently 
underway or being planned. Dietary interventions, such as caloric 
restriction and intermittent fasting, might be protective against 
development of age-related dysfunction and diseases based on stud-
ies in animal models134,135. Exercise may delay senescent cell forma-
tion and reduce inflammation, frailty and chronic disease onset in 
mice136,137. Metformin, resveratrol and rapalogs (agents related to 
rapamycin) are SASP inhibitors and appear to impact some of the 
same basic processes as caloric restriction or exercise110,138. Sirtuins 
facilitate DNA damage repair, partially relying on oxidized NAD+ to 
do so. Senescent cells can decrease NAD+ through SASP activation 
of the NAD-degrading enzyme CD38 on the surface of macrophages 
and, remarkably, senolytics partially restore tissue NAD+ levels139,140. 
NAD+ or NAD precursors can increase healthspan in experimen-
tal animals141. The non-feminizing estrogen, 17α-estradiol, declines 

with aging in females and males and 17α-estradiol treatment extends 
healthspan and alleviates age-related metabolic dysfunction and 
inflammation in mice142. As considered above, senolytics can increase 
α‐Klotho, which is geroprotective, neuroprotective and linked to 
healthspan in mice19. Interestingly, α‐Klotho overexpression in mice 
increases healthspan and lifespan by up to 30% (ref. 143). Hence, con-
sistent with the Unitary Theory, interventions targeting the different 
fundamental aging mechanisms appear to alleviate aging pheno-
types, delay, prevent or treat multiple diseases, and extend health-
span in preclinical models. Testing combinations of these lifestyle, 
nutritional, natural product and pharmacologic interventions may 
be informative. However, if the Unitary hypothesis is correct, they 
may contribute less-than-additive effects because fundamental aging 
mechanisms are tightly interconnected. A more promising strategy 
could be to combine geroscience with disease-specific interventions.

Conclusions
The elimination of senescent cells has emerged as a plausible ther-
apeutic strategy for preventing, delaying or alleviating multiple  

Box 1 | Scientific, logistical and regulatory obstacles

•	 Methods to stop effects of interventions such as vaccines 
or CAR T cells need to be devised, in case the fundamen-
tal aging mechanism that they target becomes necessary in 
a patient, for example, in the context of tissue repair, wound 
healing or pregnancy.

•	 Interventions that appear effective in preclinical models, for 
example, in mice, often fail in clinical trials222. There will be 
inevitable clinical trial failures, which could become a psy-
chological barrier and tarnish the field. A strategy to mitigate 
this could involve the conduct of multiple, parallel smaller 
trials of different geroscience interventions (for example, 
senolytics versus SASP inhibitors versus NAD+ precursors 
versus sirtuin agonists versus placebo) for different indica-
tions, each linked to fundamental aging mechanisms. These 
could be carried out across multiple institutions, but with 
shared outcome variables (for example, blood, saliva or urine 
gerodiagnostics, imaging studies, assessments of physical 
findings, activity, or other indicators and/or questionnaires).

•	 There are currently no FDA-recognized gerodiagnostics 
to serve as primary outcomes of clinical trials, nor any 
consensus-based recommendations to inform study design.

•	 There is a lack of ICD codes for relevant clinical states such as 
frailty, multimorbidity or sarcopenia.

•	 Given the importance and potential of the geroscience field, 
there are insufficient funding opportunities and incentives to 
spur progress.

•	 There are few academic geriatricians with expertise in basic 
or preclinical geroscience research or interventional clinical 
trials, and there are no resources to train sufficient numbers 
of such individuals223.

•	 Occasional exaggerated ‘antiaging’ claims and profiteering 
have caused skepticism.

•	 Many companies and entrepreneurs are not interested in life-
style, natural product or repurposed off-patent agents that 
may be effective geroscience interventions, but for which 
intellectual property protection is unattainable.

•	 Drug regulatory agencies often lack sufficient expertise and 
familiarity with geroscience interventions, which can drasti-
cally slow bench-to-bedside translation.

•	 Academic or financial ambitions, incentives and rivalries 
among investigators, disciplines and institutions can hinder 
discovery and testing of geroscience interventions.
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diseases and age-related dysfunction. Promising results of senolytics 
in preclinical models suggest therapeutic and preventive opportuni-
ties for delaying multimorbidity and increasing healthspan. While 
randomized controlled trials will define the safety and potential 
benefits of senolytic strategies, scientific and regulatory challenges 
must be addressed in the near term if senolytics are to be used in 
the clinic (Box 1).

A key priority should be the identification of reliable, sensitive 
and specific gerodiagnostics—biomarkers to quantify senescent cell 
abundance, the SASP and senolysis as well as other pillars of aging. 
Interventions modulating the SASP (including those that specifi-
cally upregulate or downregulate tissue-destructive factors versus 
growth factors) or topical senolytic agents, especially those that 
eliminate senescent cells with a proapoptotic SASP, could accelerate 
wound healing, a possibility that needs to be experimentally tested 
and correlated with predictive gerodiagnostics.

The lack of WHO International Classification of Disease (ICD) 
codes for multimorbidity, sarcopenia, healthspan or the geriatric 
syndromes represents a barrier to clinical development. Such ICD 
codes would facilitate regulatory approvals, recording of conditions 
linked to fundamental aging processes in hospital and insurance 
records, epidemiological studies, physician and hospital reimburse-
ment and engagement of the pharmaceutical industry. The possible 
interdependencies among fundamental aging mechanisms need to 
be investigated to deepen our knowledge about basic aging mecha-
nisms and disease etiologies and to develop treatment strategies to 
reduce multimorbidity and enhance healthspan.

Finally, a note of caution is important. Even though preclinical 
data are promising, unless and until carefully monitored, rigorous 
clinical trials demonstrate safety and effectiveness of senolytics or 
SASP inhibitors, they should not be endorsed for the prevention 
or treatment of diseases over-the-counter or in clinical practice. In 
the meantime, the results of ongoing and planned clinical trials will 
yield informative data and insights into the role of cellular senes-
cence as a therapeutic target for age-related disorders, potentially 
enabling translation of small-molecule senolytics into the clinic in 
the near future.
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