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Abstract	
Heritability, the proportion of phenotypic variance explained by genetic factors, can be 
estimated from pedigree data 1, but such estimates are uninformative with respect to the 
underlying genetic architecture. Analyses of data from genome-wide association studies 
(GWAS) on unrelated individuals have shown that for human traits and disease, 
approximately one-third to two-thirds of heritability is captured by common SNPs 2-5. It is not 
known whether the remaining heritability is due to the imperfect tagging of causal variants by 
common SNPs, in particular if the causal variants are rare, or other reasons such as over-
estimation of heritability from pedigree data. Here we show that pedigree heritability for 
height and body mass index (BMI) appears to be fully recovered from whole-genome 
sequence (WGS) data on 21,620 unrelated individuals of European ancestry. We assigned 
47.1 million genetic variants to groups based upon their minor allele frequencies (MAF) and 
linkage disequilibrium (LD) with variants nearby, and estimated and partitioned variation 
accordingly. The estimated heritability was 0.79 (SE 0.09) for height and 0.40 (SE 0.09) for 
BMI, consistent with pedigree estimates. Low-MAF variants in low LD with neighbouring 
variants were enriched for heritability, to a greater extent for protein altering variants, 
consistent with negative selection thereon. Cumulatively variants in the MAF range of 0.0001 
to 0.1 explained 0.54 (SE 0.05) and 0.51 (SE 0.11) of heritability for height and BMI, 
respectively. Our results imply that the still missing heritability of complex traits and disease 
is accounted for by rare variants, in particular those in regions of low LD. 
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Introduction	
Natural selection shapes the joint distribution of effect size and allele frequency of genetic 
variants for complex traits in populations, including that of common disease in humans, and 
determines the amount of additive genetic variation in segregating outbred populations 6. 
Traditionally, additive genetic variation, and its ratio to total phenotypic variation (narrow-
sense heritability) is estimated using the resemblance between relatives, by equating the 
expected proportion of genotypes shared identical-by-descent with the observed correlation 
between relatives 1,6. Such methods are powerful but blind with respect to genetic 
architecture. In the last decade, experimental designs that use observed genotypes at many 
loci in the genome have facilitated the mapping of genetic variants associated with complex 
traits. In particular, genome-wide association studies (GWAS) in humans have discovered 
thousands of variants associated with complex traits and diseases 7. GWAS to date have 
mainly relied on arrays of common SNPs that are in LD with underlying causal variants. 
Despite their success in mapping trait-associated variants and detecting evidence for negative 
selection 8,9, the proportion of phenotypic variance captured by all common SNPs, the SNP-
heritability (ℎ"#$% ), is significantly less than the estimates of pedigree heritability (ℎ&'(% ) 2,3. 
Using SNP genotypes imputed to a fully sequenced reference panel recovers additional 
additive variance 5,10 but there is still a gap between SNP and pedigree heritability estimates. 
The most plausible hypotheses for this discrepancy are that causal variants are not well 
tagged (or imputed) by common SNPs because they are rare and/or that pedigree heritability 
is over-estimated due to confounding with common environmental effects or non-additive 
genetic variation 3,11,12.  
 
Understanding the source of still missing heritability and achieving a better quantification of 
the genetic architecture of complex traits is important for experimental designs to map 
additional trait loci, for precision medicine and to understand the association between specific 
traits and fitness. Here we address the hypothesis that the still missing heritability is due to 
rare variants not sufficiently tagged by common SNPs, by estimating additive genetic 
variance for height and body mass index (BMI) from whole genome sequence (WGS) data on 
a large sample of 21,620 unrelated individuals from the Trans-Omics for Precision Medicine 
(TOPMed) program.  

Results	
Narrow-sense	heritability	estimates	of	height	and	BMI	using	WGS	data	
We used a dataset of 38,466 genomes (Supplementary Table 1) of which we selected a 
sample of 21,620 genomes with European ancestry (Online Methods; Supplementary Figure 
1). After stringent quality control (QC), we retained 47.1M variants, including SNPs and 
insertion-deletions (indels). With a MAF threshold of 0.0001 during the QC process, each 
variant was observed at least 3 times in our dataset. The available phenotypes, height and 
BMI, were adjusted for age and standardized to follow a N(0,1) distribution in each gender 
group (Online methods, Supplementary Figure 2). We also analysed BMI with a rank based 
inverse normal transformation (BMIRINT) after adjustment for age and sex. 
 
To verify that we could replicate prior estimates of ℎ"#$%  based on common SNPs, we 
selected ~1.33 M HapMap 3 (HM3) SNPs from the sequence variants and estimated ℎ"#$%  for 
height and BMI using the GREML approach implemented in GCTA 13. We estimated a SNP-
based heritability (ℎ"#$% ) of 0.49 (SE 0.02) for height and 0.27 (SE 0.02) for BMI 
(Supplementary Figure 3), consistent with previous estimates 2,14. We then repeated the 
estimation of ℎ"#$%  by mimicking a SNP-array plus imputation strategy and by stratifying 
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imputed SNPs according to MAF and LD using the GREML-LDMS approach implemented 
in GCTA 10. For the LD annotation, we preferred a SNP-specific LD metric rather than a 
segment-based metric used previously 10 because the former was shown to be more powerful 
15. We tested the two LD metric in our data and reached the same conclusion (Online 
Methods, Supplementary Figure 4). In the analysis to mimic the strategy of SNP-array 
genotyping followed by imputation, we extracted the genotypes of variants represented on 
three arrays (i.e., Illumina HumanCore24, GSA 24 and Affymetrix Axiom) and then imputed 
the genotype data to the Haplotype Reference Consortium (HRC) reference panels (Online 
Methods, Supplementary Table 2 and Supplementary Table 3) 16. Our estimates of ℎ"#$%  
increased to 0.58-0.67 (SE 0.07-0.08) for height, and 0.24-0.27 (SE 0.07-0.09) for BMI, 
depending on the array (Figure 1). Minor differences in estimates between arrays can be 
explained by the imputation process generating different number of imputed SNPs in the 
lower MAF bins between arrays (Supplementary Figure 5). These results from GREML-
LDMS analysis on imputed SNPs are consistent with previous reports 10. By selecting SNPs 
in common between TOPMed and the imputed SNPs for each array and stratifying by MAF 
and LD, we evaluated the influence of imputation errors on the variance estimates. Although 
in most cases ℎ"#$%  slightly increased using WGS over imputed data (Supplementary Figure 
6), estimates remained very close between the two data sets. These results indicate that 
imputation recovers almost as much of the variance as WGS data given the same set of SNPs. 
Note that the coverage of this set of SNPs is lower than that of the TOPMed WGS data. The 
loss of information due to imputation is either negligible or, alternatively, imputation and 
sequencing errors have similar effect on variance component estimation.	
 
We then used all sequence variants to estimate and partition additive genetic variance 
according to MAF and LD (Supplementary Table 4, Supplementary Figure 7), using the 
GREML-LDMS partitioning method 10,15. This resulted in a large increase in heritability 
estimates. When correcting for the first 20 principal components (PCs), we estimated WGS-
based heritability (ℎ)*"

% ) to be 0.79 (SE 0.09) for height and 0.40 (SE 0.09) for BMI (Figure 
2). These estimates are close to the pedigree estimates of 0.7-0.8 and 0.4-0.6 for height and 
BMI, respectively 3,17 and suggest that WGS data fully recovers the total additive genetic 
variance. The estimates for the rank-transformed BMI data were similar but consistently 
smaller when compared to those from the untransformed data (Supplementary Figure 8).	
 
The additional variance explained by WGS variants over and above that by the variants from 
the array plus imputation approach is predominantly from rare variants, in particular for rare 
variants in low LD with nearby SNPs. For the variants with MAF < 0.1, 0.38 of the 
phenotypic variance for height was accounted for by variants in the low-LD group but only 
0.05 of the variance by variants in the high-LD group (fitting 20 PCs). For BMI, the rare 
variants with 0.0001 < MAF < 0.001 contributed to 0.15 (SE 0.09) of the phenotypic variance 
(fitting 20 PCs). This large contribution of rare variants with low LD metric could only be 
detected using WGS data as these variants are not present on SNP arrays and their imputation 
is not accurate due to differences in LD structure with imputation panels and the variant 
coverage of the imputation reference 18. The proportion of variance explained by rare variants 
corresponds to most of the difference in estimates of heritability from previous SNP-based 
studies (0.56 (SE 0.02) and 0.27 (SE 0.02) for height and BMI respectively 10) and pedigree 
estimates (0.8 and 0.4-0.6 for height and BMI respectively 3,17), and confirms evidence for 
negative selection 8,9 (Supplementary Figure 9). 
 
We performed a number of additional analyses to test the robustness of the estimates. First, 
we corrected for up to 280 PCs in the analysis. This decreased the estimates to 0.75 (SE 0.09) 
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for height and 0.39 (SE 0.10) for BMI in the most extreme adjustment (280 PCs), which may 
have removed real additive genetic variance for the trait (Figure 2).  
 
Second, we explored if there was any bias due to a specific LD or MAF structure in the 
TOPMed dataset by using a different sequenced dataset for SNP stratification. We used the 
UK10K dataset 19 and re-analysed the TOPMed data using the MAF and LD stratification 
from the UK10K data. After running a QC on UK10K dataset (Online methods), we selected 
the variants in common with both TOPMed and UK10K datasets. There were 13.9M variants 
seen in both datasets, with most of the rare variants present only in TOPMed because of the 
smaller sample size (n = 3781) of the UK10K set. We once again defined 7 MAF bins with 2 
LD bins each from the two datasets, using only the 13.9M variants in common (Online 
methods). We estimated and partitioned additive genetic variance based on these 13.9M 
variants, using either the MAF and LD annotation from UK10K or TOPMed, fitting 20 PCs 
from HM3 SNPs. The estimates were highly consistent between the two analyses (Figure 3). 
For height, the estimates were 0.62 (SE 0.06) when using TOPMed annotation and 0.60 (SE 
0.06) using SNP stratification from UK10K, and the corresponding estimates for BMI were 
0.32 (SE 0.06) and 0.30 (SE 0.06), respectively. The higher estimates from TOPMed could 
reflect a better accuracy of genotypes due to higher sequencing depth (30x) compared to the 
UK10K data set (7x). These estimates were lower than when using the full set of 47.1M 
variants, which is expected given the large proportion of ℎ)*"

%  explained by rare variants, 
most of which were missing in this comparison using 13.9M variants. The similarity between 
the estimates from the two references for MAF and LD stratification suggests that our 
inference from TOPMed annotation is not biased by using MAF and LD stratification from 
the same data.  
 
Third, we compared GREML-LDMS estimates by selecting a subset 20.9M of high-quality 
variants identified with a classifier trained using a support vector machine algorithm (SVM) 
and additional hard filters (Online Methods) and by randomly selecting a similar number of 
variants with similar MAF and LD properties from the whole set of 47.1M variants 
(Supplementary Figure 10). Differences between GREML-LDMS estimates calculated using 
these two sets of variants (the high quality SVM variants and the random ones) were small, at 
0.032 for height (0.71 (SE 0.09) from high quality variants and 0.75 (SE 0.08) from random 
variants) and 0.002 for BMI (0.44 (SE 0.08-0.09) in both cases for BMI). With similar 
estimates between high quality variants and the rest of the data set, we can rule out any 
potential upward bias of estimates due to sequencing errors or batch effects in the sequenced 
data.  
 
Finally, we investigated the influence of calculating the GRM estimator 𝐴,-using the ratio of 
total SNP covariance and total SNP heterozygosity over loci (“ratio of averages”) 20 instead 
of the average ratio over loci (“average of ratio”) 13 on the GREML-LDMS estimates (Online 
Methods). Note that the default GCTA method (average of ratios) assumes an inverse 
relationship between MAF and variant effect size whereas the ratio of averages assumes no 
relationship between MAF and variants effect sizes. While the estimates for height remained 
similar between the two GRM calculation methods fitting 14 GRMs (0.79 (SE 0.09) using the 
average of ratios and 0.75 (SE 0.08) using the ratio of averages), they diverged notably for 
BMI (0.40 (SE 0.09) using the average of ratios and 0.32 (SE 0.08) using the ratio of 
averages). Most of the difference was due to the low LD 0.0001 < MAF < 0.001 bin not 
contributing to phenotypic variance as much as previously estimated. To understand this 
difference, we further divided the aforementioned bin (Online Methods) to more flexibly 
model the relationship between variant effect size and MAF, and the estimates converged as 
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we increased the number of bins (BMI estimates of 0.42 (SE 0.02) using the average of ratios 
and 0.40 (SE 0.09) using the ratios of averages by fitting 15 bins, and of 0.43 (SE 0.02) using 
the average of ratios and 0.43 (SE 0.09) using the ratios of averages by fitting 16 bins) 
(Supplementary Figure 11). The convergence to similar estimates from the two ways of 
calculating the GRM implies robustness of the analysis. 
 
Functional	annotation	
Having estimated and partitioned additive genetic variance from WGS data and verified that 
inference from SNP-array variants and arrays plus imputation are consistent with previous 
reports, we then explored whether the variance could further be partitioned by functional 
annotations. To investigate the specific contribution of low-LD variants with MAF < 0.1 to 
heritability in greater detail, we partitioned the low-MAF and low-LD variants bins further 
according to the putative effect of a variant on protein coding using SnpEff 21. The protein-
affecting group comprises loss of function and non-synonymous variants whereas the 
remaining variant set comprises synonymous, regulatory or non-coding variants (Online 
methods, Supplementary Table 5). The proportion of protein-affecting variants was different 
across LD and MAF groupings, with an increase in low frequency bins (Supplementary 
Figure 7). When running a GREML-LDMS analysis with these 20 bins, the total estimates 
remained the same for height, 0.78 (SE 0.10), and increased for BMI, 0.53 (SE 0.11) (Figure 
4). Interestingly, the average variance explained per variant was larger for bins with protein 
affecting variants (low-LD) compared to bins with non-protein-altering variants (low-LD) or 
high-LD variants (Figure 4).  
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Discussion	
We have used the largest sample to date with both WGS data and phenotypes to estimate the 
heritability for height and BMI captured by the genome in a sample of 21,620 unrelated 
individuals from the TOPMed consortium. We recover the heritability estimated from 
pedigree data for both traits and show that the additional variance detected over and above 
SNP arrays or imputation is due to rare variants, in particular rare protein altering variants in 
low LD with other genomic variants.  
 
To assess the robustness of these results, we conducted several follow-up analyses. We 
estimated the variance explained by correcting with a large number of principal components 
(up to 280) which would rule out any bias due to population stratification. We used a LD and 
MAF reference from another European dataset with whole genome sequences, and 
furthermore tested a subset of high quality variants. All three of these analyses confirmed the 
validity of the high estimates from the TOPMed WGS data. We also estimated heritability for 
height and BMI using another GRM estimator and confirmed the robustness our statistical 
framework. Finally, using a subset of the dataset and imputing it again using HRC reference 
panel, we showed that heritability estimates were higher by considering individual-SNP-
based LD score over the segment-based score, validating the role of LD partitioning in 
estimating heritability. This method also allowed us to confirm that most of the heritability 
due to very rare variants (0.0001 < MAF < 0.001) was missing when using imputed data but 
was revealed by using WGS data. We evaluated the loss of information on variance 
component estimates due to imputation compared to a similar variant coverage of WGS data 
and found negligible differences in the estimates of genetic variance. We investigated further 
the enrichment in heritability for different types of variant (high or low impact on the protein) 
and showed that for low-LD variants with MAF < 0.1, non-synonymous and protein 
truncating variants on average contributed much more to the heritability estimates than 
synonymous or non-coding variants, as it might be expected biologically. 
 
Our estimates of heritability from WGS data have standard error of about 8%. Since standard 
errors are approximately inversely proportional to sample size 22, doubling the sample size to 
42,000 would narrow errors to ~4% and would allow further and more precise partitioning of 
genetic variation. Until now the question of the contribution from rare variants to the missing 
heritability could only be investigated through imputing genotypes from WGS reference 
panels that was subject to imperfect tagging. Our results quantify this contribution and allows 
for recovery of most of the remaining missing heritability. It would be interesting to further 
partition the genome (by variant type, predicted variant deleteriousness 23 and more LD/MAF 
groupings), but standard errors of the estimates would be too large given our current sample 
size. Similarly, with a larger sample size, contribution to the heritability from assortative 
mating could be quantified 24. The contribution of rare variants to narrow-sense heritability, 
larger than expected under a neutral model, also reinforces previous observations that height 
and BMI have been under negative selection, although population expansion could also lead 
to an increase in heritability from rare variants 25. Once again, a larger sample size would 
allow us to draw stronger conclusions on the selective pressure on the genetic variants 
associated with the two traits. 
 
These results have important implications for the still missing heritability of many traits and 
diseases 3. Indeed, the ratio of SNP to pedigree heritability for diseases is lower than for 
height and BMI, leading to potentially more discovery from rare variants contributing to 
diseases using WGS data. These results also are important for polygenic risk scores as using 
WGS data could lead to predictors with larger prediction accuracy for many polygenic 
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diseases. With the cost for sequencing still much higher than array genotyping, large scale 
WGS data acquisition is currently limited to national initiatives such as TOPMed and other 
programs but is bound to expand in the next decade. Large cohorts of genotyping array data 
will still prove useful for gene discovery or predictions of common diseases and should 
complement WGS data for a broader understanding of genetic architecture. In the future, 
WGS programs for specific diseases on large cohorts could lead to a large increase of low 
MAF variants identified. Sample sizes required to detect such variants from genome-wide 
association studies using sequence data are of the same order of magnitude as current well-
powered GWAS on common SNPs, i.e. hundreds of thousands of samples.  
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Main	figures	
 

  
Figure 1: GREML-LDMS estimates with 14 bins (2 LD bins for each of the 7 MAF bins) and 
20 PCs correction (calculated from HM3 SNPs) after imputing SNPs from Illumina 
HumanCore24, GSA 24 and Affymetrix Axiom arrays using Haplotype Reference 
Consortium reference panels. (A) Estimates of ℎ"#$%  for height are between 0.58-0.67 (SE 
0.07-0.08). (B) Estimates for BMI are between 0.24-0.27 (SE 0.07-0.09). The large SEs of 
the estimates for variants with MAF between 0.0001 to 0.001 can be explained by the large 
number of imputed variants in this MAF bin because the sampling variance of a SNP-based 
heritability estimate is proportional to the effective number of independent variants 22. 
Between ~15.5M and ~20.7M variants in total are included in the analysis. The number of 
variants in each of the 7 MAF bins (twice the number in each LD bin) can be found in 
Supplementary Figure 5. 
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Figure 2: GREML-LDMS estimates from WGS data (~47.1M variants) stratified in 14 bins 
(7 MAF bins in 2 LD bins) with correction for 20 PCs (on HM3 SNPs), 140 PCs (20*7 MAF 
bins) and 280 PCs (20*14 bins). (A) Estimates for height with ℎ)*"

%  at ~0.75 - ~0.79 (SE 
~0.09). (B) Estimates for BMI with hWGS

2 at ~0.39 - ~0.40 (SE 0.09 – 0.10). These estimates 
are consistent with previous pedigree estimates for height and BMI, with a large contribution 
from variants with MAF < 0.1. The number of variants in each of the 7 MAF bins (twice the 
number in each LD bin) is respectively, from the lowest to highest MAF bins, of 28.5M, 
8.6M, 5.3M, 1.7M, 1.3M, 1.1M, 1.0M (Supplementary Table 4 and Supplementary Figure 7). 
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Figure 3: GREML-LDMS estimates from variants in common (~13.9M variants) between 
TOPMed and UK10K datasets stratified in 14 bins according to variants MAF and LD 
properties correcting for the first 20 PCs (computed from HM3 SNPs) using either TOPMed 
or UK10K LD and MAF reference. (A) Estimates of ℎ)*"

%  S for height (~0.60 – 0.62 (SE 
0.06)) or (B) BMI (~0.30 – 0.32 (SE 0.06)) are similar and independent of the LD and MAF 
reference. The number of variants in each of the 7 MAF bins (twice the number in each LD 
bin) is, respectively, from the lowest to highest MAF bins, of 3.6.M, 3.0M, 3.3M, 1.4M, 
1.0M, 0.9M, 0.8M. 
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Figure 4: Estimates of ℎ)*"

%  (~47.1M variants) by GREML-LDMS for height and BMI with 
the low-LD and low-MAF (<0.01) variants partitioned into 3 distinct categories according to 
the SnpEff putative effect of the variant (protein altering vs. non-protein altering, and a bin of 
unassigned variants), correcting for 20 PCs. There is a total of 17 genetic components in this 
analysis. (A) Results for height with an estimate of ℎ)*"

%  at ~0.78 (SE 0.10). (B) Results for 
BMI with an estimate of ℎ)*"

%  at ~0.53 (SE 0.11). (C) Variance explained per variant (the 
estimate of genetic variance divided by the variant number in each bin) of the low-MAF 
variants in the GREML-LDMS analysis on height. There is an apparent enrichment of 
heritability in the protein altering groupings (low LD) over non-protein altering (low LD) or 
high LD variants. 
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URLs	
 
GCTA, http://cnsgenomics.com/software/gcta/#Overview. Plink, https://www.cog-
genomics.org/plink2. UK10K, https://www.uk10k.org/. NHLBI, www.nhlbiwgs.org. 
TOPMed methods, https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-
freeze-5b-phases-1-and-2.  
 

Online	Methods	
 
Data	collection	
In this study, we used Whole-Genome Sequence (WGS) data from the Trans-Omics for 
Precision Medicine (TOPMed) Program. The TOPMed program collects WGS data from 
different studies and centers, in the United States and elsewhere, in partnership with the 
National Heart, Lung, and Blood Institute (NHLBI, see URLs). The “freeze 5b” version of 
the data includes 54,499 samples containing ~470M SNPs and indels in the called variants 
files (as BCF, binary variant call format). These variants have been called on genome 
assembly GRCh38 as human genome reference (see URLs for methods). Participant consent 
was obtained for each of the 16 studies (Supplementary Table 1, Supplementary Table 6) 
containing Europeans samples in the freeze 5b as well as the associated phenotypes for height 
and BMI.  
 
Quality	control	
We selected freeze 5b samples with height and BMI phenotypes available (N=38,466). After 
removing individuals under 18 years old, we had 38,291 adults left. For each sex within each 
of the 16 different studies included in this analysis (each cohort), we regressed the height and 
BMI according to their age and kept the residuals. Moreover, to remove differences in mean 
and standard deviation between sexes and among cohorts, we standardized the residuals by 
the standard deviation of each sex and cohort. The standardized residuals on height and BMI 
of each gender group of each cohort followed a distribution N(0,1) (Supplementary Figure 2). 
We also applied a rank-based inverse normal transformation on the BMI (BMIRINT) after 
adjustment for age and sex. On the genotypes, we performed additional quality control steps 
on the data by excluding variants with genotypes missingness rate >0.05, Hardy-Weinberg 
equilibrium test P value <1 × 10−6, or with a minor allele frequency <0.0001 using PLINK 
v1.9 (see URLs, 26). We also excluded individuals with sample missingness rate >0.05. Using 
HapMap phase 3 reference panels (HM3) variants and HapMap populations’ references, we 
selected TOPMed samples within +/-6 standard deviation of the mean in principal component 
1 and 2 for HapMap CEU population (Supplementary Figure 1). We also controlled for other 
type of stratification in our sample, by sequencing center (Supplementary Figure 1), study 
and sex. On the remaining samples with European ancestry (28,561 individuals), we built a 
genetic relatedness matrix based on pairwise genetic relationships using variants on HM3 
reference panels and observed values ranging from -0.023 to 0.31, indicating that individuals 
with some degree of relatedness were in our dataset. We removed one of each pair of 
individuals with estimated genetic relatedness > 0.05. At the end of all the quality control 
steps, we retained 21,620 unrelated individuals of European ancestry and 47.1 million 
variants. MAF and LD distribution of the variants are shown in Supplementary Figure 7. 
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Statistical	framework	of	the	GREML	analysis	
The GREML analysis is based on the idea to fit the effects of all the SNPs as random effects 
by a mixed linear model (MLM), 

𝒀 = 𝑿B	 + 𝒈 + e 
 
where XB is a vector of fixed effects such as age, sex and in our case the principal 
components of each subset of SNPs, 𝒈 is an n x 1 vector of the total genetic effects captured 
by all the sequenced variants of all the individuals (with n being the sample size) and 𝜺 is a 
vector of residuals effects. From MLM, 𝒈 follows a distribution 𝒈~𝑁(0, 𝑨𝜎<%) where A is a 
GRM interpreted as the genetic relationship between individuals. We estimate 𝜎<% using the 
REML algorithm 13. 
 
The genetic relationship between individuals j and k (𝐴,-) was estimated by the following 
equation: 
 

𝐴,- = 	
1
𝑁

(𝑥@, − 2𝑝@)(𝑥@- − 2𝑝@)
2𝑝@(1 −	𝑝@)

#

@DE

 

 
where xij the minor allele count for SNP i in individual j, N the number of SNPs, and p is the 
sample minor allele frequency. We refer to this method of estimating pairwise relationships 
as the average of ratios, where the ratio is the SNP covariance divided by SNP 
heterozygosity. By using the sample allele frequencies, 𝐴,- does not represent a measure of 
kinship between two individuals, although the GRM should be highly correlated with the 
kinship matrix if we were to have full and accurate pedigree data on the entire sample 20.We 
calculated multiple GRMs based on subset of SNPs (stratified by MAF, LD, annotations, etc) 
and fit them as random effects according to a more general model: 

𝒀 = 𝑿𝑩 + 𝒈@

G

@DE

+ 	e 

where the phenotypic variance 𝜎$% is the sum of the residual variance and the variance of each 
of the ith genetic factors (each with a corresponding GRM). 
 
To compare the methods to calculate the generic relationship between individuals j and k we 
also used the ratio of total SNP covariance and the total SNP heterozygosity over loci (the 
ratio of averages) 20 from the following equation: 
 
 

𝐴,- = 	
(𝑥@, − 2𝑝@)(𝑥@- − 2𝑝@)#

@DE

2 𝑝@(1 −	𝑝@)#
@DE

 

 
 
Proportion	of	genetic	variation	captured	by	imputation	
Previous REML estimates based on rare variants were conducted by imputing SNP chip data 
on a reference panel such as 1000 Genomes 10. To check the consistency of our data set with 
previous estimates, we mimicked SNP chip data by selecting SNPs in our dataset present on 
Illumina HumanCore24 v1.0, GSA 24 V1.0 and Affymetrix Axiom UKB WCSG 34 arrays. 
We downloaded the list of SNPs of these arrays, the UCSC to Ensembl reference and the 
GRCh37 reference. With those, we selected subsets of the SNPs in common between 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 25, 2019. ; https://doi.org/10.1101/588020doi: bioRxiv preprint 

https://doi.org/10.1101/588020
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 15	

TOPMed dataset and each of the SNP arrays and used LiftOver to convert the datasets from 
GRCh38 to GRCh37 reference. To prepare the files for imputation, using BCFtools we 
migrated from the UCSC to Ensembl style chromosomes names, fixed the forward strand 
convention and flipped or removed SNPs not matching on the reference genome. After this 
merging and cleaning process, we retained the majority of the SNPs present on each array 
(Supplementary Table 2). We then imputed our dataset on the Sanger imputation server 16. 
Imputation was performed in two stages. Prior to imputation, each chromosome was phased 
against HRC.r1.1 16 reference using EAGLE2 v2.0.5 27. In a second stage, data were imputed 
using Positional Burrows-Wheeler Transform. On the imputed datasets, we extracted variants 
with imputation info score > 0.3 and performed another QC filtering removing variants with 
individual missingness rate > 0.05, Hardy-Weinberg equilibrium test P-value <1 × 10−6, 
MAF < 0.0001 or variant missingness rate > 0.05 After imputation and filtering, we had 
between ~15 and 20M SNPs left on each imputed dataset, with notably fewer variants from 
the Axiom array, most likely due to the higher proportion of low MAF variants on this array 
(Supplementary Table 3 and Supplementary Figure 5). On each imputed dataset, we stratified 
SNPs into 7 MAF bins (0.0001<MAF<0. 001, 0.001<MAF<0.01, 0.01<MAF<0.1, 
0.1<MAF<0.2, 0.2<MAF<0.3, 0.3<MAF<0.4, and 0.4<MAF<0.5). For each of these 7 MAF 
bins, we independently calculated the LD score of the variants within a MAF bin on a sliding 
window of 10Mb using GCTA software 13. We performed two types of LD binning, selecting 
variants based on their individual LD values or on their segment-based LD value (segment 
length = 200Kb) (Supplementary Figure 4). Each of the 7 MAF bins was divided into 2 more 
bins, one for variants with LD scores above the median value of the bin (high LD bin) and 
one for variants with LD score below median (low LD bin) (Supplementary Table 4). We 
then used GCTA to perform a GREML-LDMS analysis with the first 20 PCs calculated using 
HM3 SNPs from the WGS data set fitted as fixed effects and the variants in the 14 MAF and 
LD bins as 14 random-effect components (Figure 1). To assess the influence of imputation 
errors on variance estimates, we selected, for each of the 3 imputed data sets, the SNPs that 
were in both the imputed data set and the TOPMed WGS data set. We had 13.1M, 17.3M and 
17.6M SNPs found in both TOPMed and Affymetrix Axiom UKB WCSG 34, Illumina 
HumanCore24 v1.0 and GSA 24 V1.0 imputeds data sets respectively. On each of these 6 
subset data sets (3 different arrays and 3 different subsets from WGS data), we partitioned 
SNPs in 14 groupings, according to their MAF and LD scores, similarly to the previous 
analysis. We then ran a GREML-LDMS analysis on height and BMI for each data set with 20 
principal components calculated from Hapmap3 SNPs fitted as fixed covariates. 
 
GREML	estimates	from	WGS	data	
Before estimating the proportion of phenotypic variance due to additive genetic factors from 
WGS data we initially wanted to check for consistency with previous studies and performed a 
single-component GREML analysis (GREML-SC approach) in GCTA using HM3 SNPs with 
0 or the 20 PCs (calculates from the same set of SNPs) fitted as fixed effects. We chose a 
different analysis to estimate heritability for height and BMI when using the whole dataset. It 
has previously been shown 10 that a GREML-SC approach can give a biased estimate of ℎ% if 
causal variants have a different MAF spectrum. Whereas a GREML-MS analysis fits in a 
single model multiple GRMs (one GRM for each MAF bin). We performed this analysis 
using 7 MAF bin (0.0001<MAF<0. 001, 0.001<MAF<0.01, 0.01<MAF<0.1, 0.1<MAF<0.2, 
0.2<MAF<0.3, 0.3<MAF<0.4, and 0.4<MAF<0.5). For each MAF bin, we performed a PCA 
analysis and included the first 20 eigenvectors of the bin as fixed covariates in our GREML-
MS analysis (140 PCs in total). To investigate the effect of PC correction on the REML 
estimates, we ran the GREML-MS analysis using multiple PCs corrections: without any PC 
correction; correcting with 20 PCs calculated from HM3 SNPs, and with 20 PCs calculated 
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from the variants of each MAF bin (Supplementary Figure 3). Subsequently, after running the 
GREML-MS analysis and investigating the influence of PCs correction, we ran a GREML-
LDMS analysis. As with the GREML-MS approach, if two variants in the same GRM have 
different LD properties, this can lead to biased estimates of heritability. Similarly to what was 
done using data imputed from array SNPs, we defined 14 bins by splitting each of the 7 MAF 
bin into a high LD and a low LD one, according to their median LD value calculated on all 
variants present on each chromosome within a sliding window of 10Mb (Figure 2). To 
investigate how low-quality variants would bias estimates, we also conducted an analysis by 
using only the 20.9M variants that passed a support vector machine (SVM) classifier and 
passed additional filters on excess of heterozygosity and Mendelian discordancy. The SVM 
classifier was trained using variants present on genotyping arrays labelled as positive 
controls, and variants with many Mendelian inconsistencies labelled as negative controls. We 
also defined a subset of the whole data set with the same number of variants, MAF and LD 
properties as the variants that passed the SVM classifier. On each of those two subsets of the 
WGS data, we ran a 14 bins GREML-LDMS analysis (7 MAF bins and 2 LD bins, LD 
reference calculated from the whole data set).  
 
To investigate the robustness of the assumptions on the relationship between MAF and effect 
size, we ran a GREML-LDMS analysis on the previously defined 14 MAF and LD bins using 
either the ratio of averages over loci or the average over loci of ratios methods to compute the 
GRMs. We further divided the bin with low LD and 0.0001 < MAF < 0.001 into 2 bins with a 
similar number of variants (7.1M variants in each bin) and into 3 bins of (4.8M variants in 
each bin) and calculated the GRMs using both methods. We ran a GREML-LDMS analysis 
using the 15 and 16 GRMs. 
 
Comparison	with	UK10K	dataset	
To ensure the GREML-LDMS estimates were not due to population stratification, we 
repeated the GREML-LDMS analysis using LD and MAF reference from another dataset. 
We converted UK10K WGS data 19 to GRCh38 reference coordinates using LiftMap, a 
wrapper Python script for LiftOver 28. There are 3781 individuals in the UK10K dataset. As 
with TOPMed, we performed a quality control step on the genotypes using PLINK with the 
following filtering thresholds: individual and variant missingness > 0.05, Hardy-Weinberg 
equilibrium test P value <1 × 10−6, minor allele frequency < 0.0001, genotype missingness 
rate > 0.05; and retained 42.68M variants. On these variants, we selected the ones in common 
with the TOPMed dataset and obtained 13.9M variants in common. Using these 13.9M 
variants on a subset of UK10K dataset, we defined 7 MAF bins (0.0001<MAF<0. 001, 
0.001<MAF<0.01, 0.01<MAF<0.1, 0.1<MAF<0.2, 0.2<MAF<0.3, 0.3<MAF<0.4, and 
0.4<MAF<0.5) that we further split in 14 bins according to their LD scores (above or below 
the median LD score value of each MAF group), based on the LD score of individual variant 
calculated in a window of 10Mb. We then ran a GREML-LDMS analysis for height and BMI 
after calculating GRMs from the TOPMed dataset with the 14 variant bins defined from the 
UK10K dataset. We also defined similar MAF and LD bins on a subset of TOPMed dataset, 
but using bins defined from TOPMed dataset. We ran both GREML-LDMS analyses (with 
variants bins defined from UK10K and TOPMed) by correcting for HM3 SNPs bins and by 
correcting by 20 PCs in each variant bin (Figure 3). 
 
Enrichment	analysis	using	the	variant	effect	consequence	
Lastly, using SnpEff annotations 21 and the LD and MAF bins previously defined from the 
GREML-LDMS analysis on the WGS data mentioned above, we further separated the low-
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LD variants in each of the 0.0001<MAF<0.001, 0.001<MAF<0.01 and 0.01<MAF<0.1 bins 
into each of 3 more bins according to their predicted variant effects. The SnpEff variant 
effect annotations were divided in 4 categories according to their predicted effects on gene 
expression and protein translation. The 4 categories are based on the Sequence Ontology 
terms used in functional annotations (Supplementary Table 5). Putative effects on proteins 
can be “High” (protein truncating variants, frameshift variants, stop gained, and stop lost etc), 
“Moderate” (mostly non-synonymous variants), “Low” (mostly synonymous variants) or 
“Modifier” (mostly intronic and upstream or downstream regulatory variants). We merged 
variants having “High” and “Moderate” impacts in a “Protein altering” bin and variants 
having “Low” and “Modifier” impacts in a “Non-protein altering” bin. Variants with missing 
predicted effect annotation were grouped in an “Unassigned” bin. We then ran a GREML-
LDMS analysis with the 20 PCs calculated from HM3 SNPs fitted as fixed effects on 17 bins 
in total (Figure 4). To compute the variance per SNP, we divided the variance explained by 
each bin by the number of variants in each bin. The standard error was obtained by dividing 
the standard error of the heritability estimate of the bin by the number of variants in the bin. 
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