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A B S T R A C T

Via meta-analysis, we examined whether the heritability of intelligence varies across racial or ethnic groups.
Specifically, we tested a hypothesis predicting an interaction whereby those racial and ethnic groups living in
relatively disadvantaged environments display lower heritability and higher environmentality. The reasoning
behind this prediction is that people (or groups of people) raised in poor environments may not be able to realize
their full genetic potentials. Our sample (k = 16) comprised 84,897 Whites, 37,160 Blacks, and 17,678
Hispanics residing in the United States. We found that White, Black, and Hispanic heritabilities were consistently
moderate to high, and that these heritabilities did not differ across groups. At least in the United States, Race/
Ethnicity × Heritability interactions likely do not exist.

1. Introduction

In behavioral genetic research, individual variance in cognitive
ability is commonly partitioned into three components. The first is the
additive genetic component (a2, also known as h2), which refers to
genetic effects on a trait that act additively. This component is called
(narrow) “heritability.” The second component is the common or
shared environment (c2), which denotes environmental effects that
make family members more similar. The third component is the un-
shared environment (e2), which consists of non-genetic effects (plus
measurement error) that are not shared between family members, but
which instead differentiate them from each other. Collectively, the last
two components are known as “environmentality” (Plomin, DeFries,
Knopik, & Neiderhiser, 2014).

These three components together comprise the “ACE” model of
behavioral genetics. The model represents one basic, biometric frame-
work behavioral geneticists may use when studying the heritability of
human traits, including intelligence. The ACE model assumes that en-
vironmental and genetic influences are additive, but allows that inter-
actions (e.g., A × E) may also exist between components; these can be
estimated as well (Plomin et al., 2014; Vinkhuyzen, van der Sluis, Maes,
& Posthuma, 2012). Moreover, the model is useful in intelligence re-
search because the behavioral genetic architecture of the trait is “sur-
prisingly simple” (Plomin et al., 2014, p. 200). Finally, the ACE model

nicely fits IQ data, and ACE estimates do not require the use of cum-
bersome kinship designs.

The relative importance of genetic and environmental sources of
individual differences in cognitive ability has been extensively studied.
Results for the general population show that the proportion of variance
in IQ explained by genes increases with age (Plomin et al., 2014).
Specifically, in early childhood, genetic effects explain less than 50% of
IQ variance, and the effect of the shared environment is relatively
strong. As children age, though, genetic effects become increasingly
prominent, and the environmental variance due to factors common to
siblings decreases. In adults, the heritability of intelligence is 60–80%,
while the effect of common environment is small, if not zero (Plomin
et al., 2014). The unshared environment explains the rest.

The degree to which one can generalize heritability estimates to
other populations has been debated (see, e.g., Sesardic, 2005). It is
clear, though, that some variables (e.g., age; Plomin et al., 2014)
moderate the heritability of cognitive ability. One putative moderator is
the quality of one’s environment. Poorer (richer) environments suppo-
sedly correspond to lower (higher) heritability, to a presumably mea-
surable degree. Said differently, “natural potentials for adaptive func-
tioning are more fully expressed in the context of more nourishing
environmental experiences” (Tucker-Drob & Bates, 2016, p. 1). This
prediction is known as the Scarr-Rowe hypothesis (Scarr-Salapatek,
1971; Turkheimer, Harden, D’onofrio, & Gottesman, 2011).
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The Scarr-Rowe hypothesis predicts lower heritabilities for lower
performing social classes and racial/ethnic groups (Scarr-Salapatek,
1971, p. 1286). Scarr-Salapatek’s (1971) original hypothesis and re-
lated ones – examples include the “Threshold Hypothesis” (Jensen,
1968), the “Bio-ecological Model” (Bronfenbrenner & Ceci, 1994), and
the “Gene–Gini Hypothesis” (Selita & Kovas, 2019) – predict that Scarr-
Rowe interactions will result when there are environmental differences.
Assuming that social class and racial/ethnic differences are largely
environmental in origin, Scarr-Salapatek (1971) and others have pre-
dicted lower heritabilities for the lower scoring groups.

Does the heritability of human intelligence differ by either social
class or race/ethnicity? The answer is complicated because variables
like age and the country sampled can moderate the effects. For ex-
ample, a meta-analysis by Tucker-Drob and Bates (2016) found greater
heritability with higher socioeconomic status, but these effects existed
only with participants from the United States. Regarding age, recent
data from Germany suggest the existence of a Scarr-Rowe interaction,
but one which declines with increasing age (Gottschling et al., 2019).

While Scarr-Rowe interactions for social class are relatively well-
studied, interactions for race or ethnicity are less so. Hence, whether
Scarr-Rowe interactions for race or ethnicity exist is unclear. Some re-
views suggest that the heritability of intelligence is similar across cul-
tures (Plomin et al., 2014) and ethnic groups (Jensen, 1998; Rushton &
Jensen, 2005). Others suggest differently (Turkheimer, Harden, &
Nisbett, 2017).

The issue is relevant for several reasons, including evaluating the
trans-ethnic validity of polygenic scores. Recently, Lee et al. (2018)
developed polygenic scores for both intelligence and educational levels.
These scores were derived from European samples and they showed
lower predictive accuracy in non-European groups such as African
Americans. The typical explanation offered for attenuated predictive
accuracy is decay of linkage disequilibrium (LD) which results in dif-
ferences in the correlations between SNPs across different ancestry
groups (Zanetti & Weale, 2018). Another hypothesis appeals to lower
within-group heritability in non-White groups (see, e.g., Rabinowitz
et al., 2019). Both explanations are plausible since the predictive ac-
curacy of polygenic scores is a joint function of (1) the validity of the
scores as predictors of the traits, and (2) the within-group heritability of
the traits in question (i.e., the association between the genotype and the
phenotype; Daetwyler, Villanueva, & Woolliams, 2008). While LD
decay might be a theoretically adequate explanation for attenuated
predictive accuracy of PGS (Zanetti & Weale, 2018), whether it is the
actual explanation can only be properly evaluated when the herit-
abilities of the trait within the different subgroups are known.

Our aim is to shed light on these matters by conducting a systematic
review and meta-analysis. The goal is to test for the presence of Scarr-
Rowe interactions with respect to race/ethnicity. Our specific research
question is whether the heritability of intelligence differs across racial/
ethnic groups residing in the United States (we searched for studies
worldwide but found only samples from this country).

2. Method

2.1. Method for study identification, screening, and selection

We first created a database of all studies reporting ACE estimates for
multiple racial/ethnic groups. Next, we conducted a meta-analysis of
these estimates in order to assess the existence of Scarr-Rowe interac-
tions for race/ethnicity. We included a qualitative review of these
studies in the supplementary file. We also reported the PRISMA state-
ment requirements that were relevant for our review and meta-analysis.
Outlined below are the steps for the literature review, data extraction,
data preparation, and data analysis.

2.1.1. Information sources and eligibility criteria
There was no formal, registered review protocol for this study. To

begin, we conducted searches to identify studies for inclusion in our
database. First, we reviewed the literature discussed by Loehlin,
Lindzey, and Spuhler (1975), Jensen (1998), Rushton and Jensen
(2005), and *Fuerst & Dalliard, 2014. This review revealed 17 articles
for potential inclusion in our database. Next, we scanned the following,
major Gene × SES interaction review papers: Turkheimer et al. (2011),
Nisbett et al. (2012), Hanscombe et al. (2012), Tucker-Drob, Briley, and
Harden (2013), Turkheimer and Horn (2014), Tucker-Drob and Bates
(2016), Selita and Kovas (2019), together with the papers cited therein.
This search revealed approximately 30 (more or less non-redundant)
potential papers in addition to the previous 17.

Third, we conducted Google Scholar, PsycINFO, and Medline sear-
ches on the subject matter. All searches were limited to literature in the
English language. We considered both published and unpublished re-
sults. As for the timeline, we searched for abstracts published between
1970 and 2018.

2.1.2. Electronic search
For Google Scholar, we searched for papers that included “herit-

ability” and “race OR ethnicity OR African OR Black OR Latino OR
Hispanic OR Asian Or Pacific Islander” and “cognitive ability OR
achievement OR intelligence OR IQ.” This produced many abstracts,
ranked by relatedness to the topic, so we limited consideration to the
first 20 pages (100 results) for each year. These totaled 4,800 abstracts.
For PsycINFO, we used a Boolean, all-text search with the terms:
"heritability OR genetic factors OR shared environment OR unshared
environment" AND "race OR ethnicity OR minority OR Asian OR Pacific
Islander OR African OR Hispanic OR Black OR Latino" AND "cognitive
functioning OR cognitive ability OR IQ OR intelligence OR achievement
OR math OR reading OR executive function OR verbal ability OR spatial
ability." This process revealed 222 abstracts for potential inclusion in
the study. For Medline, we used a Boolean, all-text search with the
terms: “twins OR heritability OR shared environment OR unshared
environment OR genetic factors” And “ethnicity OR minority OR Asian
OR Pacific Islander OR African OR Hispanic OR Black OR Latino” AND
“cognitive function OR IQ OR Intelligence OR achievement OR math
OR reading OR executive function OR verbal ability OR spatial ability.”
We identified 207 abstracts via this search.

From the pool of approximately 5000 potential papers, we scanned
all abstracts and texts (when warranted) for any that discussed:
Variance decomposition (e.g., heritability, genetic factors, or twins),
race/ethnic groups (along with specific ethnic groups), and cognitive
ability (e.g., cognitive function, intelligence, or IQ). When a study im-
plied that estimates meeting our criteria had been computed but not
reported, we tried to contact the authors to request the subgroup esti-
mates. Specifically, we tried to contact authors for reanalysis whenever:
(1) a study reported variance estimates for a population while also
noting the race/ethnicity of the sample, (2) sample sizes were thought
to probably include an analyzable (npairs > 50 by kin class) minority
sample, and (3) we did not already request the data for the same sample
from other research teams. As re-analysis would involve non-trivial
effort on the original authors’ parts, we exercised constraint when
making our requests. As a result, we emailed 25 corresponding authors/
research teams for additional data.

2.1.3. Eligibility criteria
One of us (JGRF) reviewed the abstracts on a rolling basis over the

course of several years. The inclusion criteria were as follows:

1. We had to be able to copy or calculate ACE (or at least A) estimates
from the reported data.

2. We had no minimum sample size for contrasting kinship classes (the
minimum sample size mentioned above applied only to requesting
data from other authors). All identified studies for which we had
data were included in the meta-analysis.

3. The ACE or A estimates had to be interpretable in light of theory.
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Due to this criterion, we excluded a study by Zhang and Pierce
(2014). Pierce (December, 18, 2018, personal communication) re-
ported a heritability of .999 for African Americans using GCTA. The
authors interpreted this to mean that the sample size was too small
to accurately estimate heritability using this technique.

4. The ACE or A estimates had to be based on some measure of mental
ability, as defined by Jensen (1998, pp. 52–53; see also,
Rindermann, 2018, pp. 43–45).

5. The samples had to include data for more than one race or ethnic
group to allow for comparisons using both the same tests and
methods for computing ACE estimates. For example, Johnson et al.
(2007) reported the heritability of complex reasoning in a sample of
Caribbean Latinos. We did not include this study here because there
was no other racial or ethnic group with which to compare scores. In
contrast, we did include ACE estimates for heterogenous racial/
ethnic groups such as “non-majority” or “non-White.” An example of
the latter case is the study by Rhemtulla and Tucker-Drob (2012),
which included estimates for Whites and “non-Whites”.

6. When more than one study reported data from the same sample, we
included only the study with the largest harmonic N and the most
comprehensive analysis. For example, data from Beaver et al. (2013)
overlapped with that from both Rowe, Jacobson, and Van den Oord
(1999), and Guo and Stearns (2002). We included only the Beaver
et al. (2013) analysis, because it had larger Ns than Guo and Stearns
(2002) and because it included longitudinal data (i.e., multiple
waves), unlike Rowe et al. (1999).

2.1.4. Identified studies and study selection
After contacting researchers for unpublished data, we identified 22

studies for possible inclusion in the meta-analysis. Next, two of us in-
dependently rated the set of potential studies for usability. Percent
agreement was then computed, resulting in an interrater reliability of
.91 (i.e., 20 out of 22). Thereafter, the ratings were discussed again
until complete agreement was reached.

Fig. 1 depicts the flowchart for study identification. Note that one of
these studies was an unpublished analysis (Fuerst, 2014), which we
then reanalyzed using the updated NLSY Kinship Links data. Of the 22
studies in Fig. 1, we excluded seven from the qualitative review (pro-
vided in the Supplementary Materials). We did this because six of the
seven contained redundant samples and one of the seven had unin-
terpretable results (according to the authors; Zhang & Pierce, 2014;
Pierce, personal communication, December 18, 2018). For the meta-
analysis, we excluded another two studies because we did a re-analysis
of the first (*Fuerst & Dalliard, 2014), whereas the second (Loehlin
et al., 1975) reported scores that were redundant with follow-up data
we already had. The remaining 13 studies yielded 16 independent sets
of samples, allowing for 40 dyadic group comparisons. Table 1 provides
details for all these studies.

We did not limit our search to just the United States, but all samples
came from there. This outcome likely occurred for two reasons. First,
only fairly well-developed countries have extensive biometric research
programs. Second, developed countries, apart from the United States,
were until recently largely ethnically homogenous, with demographic
changes occurring only within the last 30 or so years.

2.2. Data items

For each study included in the qualitative review, we recorded the:
(1) study or survey from which the sample came (e.g., the Georgia Twin
Study), (2) race/ethnic subgroups (e.g., White), (3) ACE estimates and
intraclass correlations for subgroups and tests, (4) standard errors for
the ACE estimates, when available, (5) samples sizes or percent sample
sizes for each kinship class by race/ethnicity, (6) specific cognitive tests
used, and (7) subgroup means and standard deviations, when available.
We also coded any pertinent data regarding whether the authors or
others reported concerns with the samples, methods of analysis, tests

employed, etc.

2.2.1. Data extraction and collection process
When a study reported intraclass correlations but did not report

SEM or regression-based ACE estimates, we computed the estimates
with Falconer’s formula. Otherwise, we used reported ACE estimates if
they were standardized. If they were not, we first set any negative ACE
estimates to zero and then we standardized the values, so their total
variance summed to one. We evaluated the effect of constraining esti-
mates from 0 to 1, since doing so could potentially bias estimates of the
variance components. Details are provided in Supplementary Materials
Table S5b. We concluded that this was not a concern as only 4 of the 16
studies could have allowed for alternative estimates and all of these had
small Ns.

We also recorded means and standard deviations for all cognitive
tests with ACE estimates. When sample means and standard deviations
were neither provided nor available, we found or computed means and
standard deviations based on the source data from which the sample
came. For example, scores were not provided for the Add Health
sample. However, we were able to obtain Wave I and III PPVT means
and standard deviations by race/ethnicity from the publicly available
Add Health survey data.

2.2.2. Computations of ACE estimates and group difference effect sizes
We either computed or recomputed ACE estimates using Falconer's

formula and its derivations (see, e.g., Plomin et al., 2014, pp. 381–382).
The formulae are:

= + +Var(P) a c e2 2 2 (1)

= −r ra 2 ( MZ DZ),2 (2)

= −rc ( MZ a ),2 2 (3)

= − re (1 MZ)2 (4)

where Var(P) designates the phenotypic variance, a2 (or A) designates
variance attributable to additive genetics, c2 (or C) designates variance
attributable to the shared environment, e2 (or E) designates variance
attributable to the non-shared environment, rMZ designates the in-
traclass correlation for monozygotic or “identical” twins, and rDZ des-
ignates the intraclass correlations for dizygotic or “fraternal” twins.

For data from one study (Scarr-Salapatek, 1971), we first had to
compute the identical twin intraclass correlations from the same sex
twin correlations. To do this, we used the formula given by Loehlin
et al. (1975, p. 288). We then used the results of this formula in the
equations above.

For some samples, ACE estimates were given for multiple tests/
subtests. For these, we created summary estimates by averaging ACE
values within samples (across tests). For a few of these samples, addi-
tional subtests were given to only partial samples (e.g., Osborne, 1980,
wherein 304 White sibling pairs were given the Basic Test Battery while
only 63 of these pairs were given the Cattell Culture Fair test). In these
cases, we weighted individual ACE estimates by the harmonic N for the
kinship pairs to not lose information. We used the harmonic N because
this considers unbalanced sibships used in computing ACE estimates
(e.g., if one group comprised N = 50, but the other group is comprised
of N = 400). The rationale for using harmonic N is detailed by te
Nijenhuis and van den Hoek (2016), and we employ this statistic for the
same reason. The formula is:

= × +Nh N N( )/(1/x 1/x )1 2 (5)

where N is the number of samples, and x1 is the sample size for group 1.
When there were more than two groups, we used the largest group
(usually full siblings) for x1 and the remainder (e.g., half-siblings,
cousins, adoptees) for x2. Details are provided in Tables S3 and S4 of the
Supplementary Materials (SM) file.

Preferably, across studies, ACE estimates would be weighted by the

B.J. Pesta, et al. Intelligence 78 (2020) 101408

3



standard errors of the variance components, since kinship designs and
samples differ regarding how precisely the variance components are
estimated. However, except in two cases (see below) we did not have
information to directly compute standard errors. That said, all things
being equal, standard errors will be proportional to the theoretical,
intraclass correlations (Falconer, 1960). Loehlin et al. (1975, pp.
288–289) provided a simplified formula for estimated standard errors
based on the observed intraclass correlations and theoretical coeffi-
cients of relatedness. The formula is as follows:

≈

−

−
+

−
σh

rg rg
r

N
r

N
1

1 2
(1 )

1
(1 )

2B
2 1

2 2
2
2 2

(6)

where N1 and N2 are the number of pairs in the two groups, respec-
tively, rg1 and rg2 are the theoretical coefficients of relatedness, re-
spectively, and r1 and r2 are the observed intraclass correlations, re-
spectively.

We used Loehlin’s formula to estimate error variances (with two
exceptions, see below), which we then used in the meta-analysis. When
there were more than two groups, we used the largest group (usually
full siblings) for rg1 and r1 and then the weighted average of the next
largest group (e.g., half-siblings and cousins) for rg2 and r2. Details are
provided in Tables S3 and S4 of the SM File. As for the two exceptions,

Kevin Beaver (personal communication, October 3, September 24,
2013) provided confidence intervals for the Collaborative Perinatal
Project and Add Health results, and Mollon et al. (2018; fig. 1) depicted
confidence intervals for the Philadelphia Developmental Cohort. We
calculated standard errors from the confidence intervals in these cases.
These were computed as:

=

× − + −Upper C I h h Lower C I
S. E.

( 95% . . ^2 ^2 95% . .)

1.96

1
2

(7)

Because our estimated standard errors were imprecise, we also tried
weighting by the harmonic Ns of the samples as an alternative. Using
these alternative weights did not alter our results.

Regarding effect sizes, we computed Cohen’s d for all 40 pairs of
groups, and for all test scores for which there were ACE estimates.
When possible, we used data for the kinship sample specifically used in
computing the ACE estimates. Otherwise, we used data from the survey
where the kinship sample came from. Data sources are noted in Table
S5 of the SM file. The formula for Cohen’s d is:

= −d SD(x x )/pooled1 2 (8)

where SD stands for standard deviation and x1 is the mean of Group 1.

Fig. 1. Flowchart for study identification.
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3. Meta-analytic methods

3.1. General procedure

Recently, various meta-analyses of heritability have been published
(Polderman et al., 2015; van Houtem et al., 2013; Vukasović & Bratko,
2015; Willems, Boesen, Li, Finkenauer, & Bartels, 2019) and we fol-
lowed their general procedures. The summary characteristics for the
meta-analysis were ACE estimates for the 16 samples’ summary cog-
nitive measures together with the Harmonic Ns and the standard errors
of the heritability estimates. For the summary data, we (1) retained
Mollon et al.’s (2018)g, (2) used our own summary estimate for Scarr’s
(1981) data, and (3) used our own CNLSY estimates for g (see the re-
view in the SM). Note that for one of the samples (i.e., Mollon et al.,
2018), we only had h2 estimates. As such, the ks differ for some of the
ACE components. Table 2 summarizes the data (see the SM files for
additional data and computation).

3.2. Main analyses

We based the meta-analyses on a random-effects model which we
conducted with the Hunter and Schmidt psychometric meta-analytic
package (Schmidt & Le, 2004). Our measure of consistency was the
percent of variance explained by sampling error between the data
points. We conducted two meta-analyses, each using alternate weights.

In one we used harmonic Ns and in the other we used the standard
errors of the heritability estimates. The latter adjusts for the precision of
the estimates.

We meta-analyzed the ACE estimates for each racial/ethnic group,
and then tested for the existence of moderator variables. The potential
moderator variables were age (less than 12 years or not), biometric
method (Falconer’s formula or other), and measure of cognitive ability
(academic achievement test scores or g/IQ). We selected these for
several reasons. First, age is known to be a moderator of heritability
estimates (Plomin et al., 2014). Second, Falconer’s formula may give
less reliable estimates relative to SEM or regression-based approaches.
Third, tests which better measure g may more strongly predict racial
and ethnic group differences, while also being more heritable (e.g., te
Nijenhuis, Kura, & Hur, 2014). Following Schmidt and Hunter’s (2015)
recommendations regarding moderation, we split our database in two
and applied meta-analytic techniques to each subset. Signs of mod-
eration include finding substantially different mean correlations, to-
gether with an increase in the amount of variance explained by sample
size.

We next meta-analyzed ACE estimate differences for the pairs of
races/ethnicities in each sample. The comparison groups were Whites
and each minority group. We did not include minority/minority group
comparisons since the number of such comparisons was too small. For
these analyses there were 26 dyadic comparisons. This difference-score
analysis effectively controlled for several possible moderators, as the

Table 2
Summary table for the meta-analysis.

Study # Study Analysis type Test types Race/ethnicity Nh S.E. A A C E

1 Scarr-Salapatek (1971) Falconer's IQ or g White 230 0.33 0.28 0.44 0.28
2 Beaver et al. (2013) SEM IQ or g White 2604 0.11 0.48 0.28 0.25
3 Hodges (1976) Falconer's IQ or g White 217 0.17 0.34 0.42 0.24
4 Osborne (1980) Falconer's IQ or g White 299 0.16 0.54 0.28 0.18
5 Scarr (1981) Falconer's IQ or g White 208 0.23 0.53 0.03 0.43
6 Scarr et al. (1993) Falconer's IQ or g White 34 0.40 0.41 0.27 0.32
7 Beaver et al. (2013) SEM IQ or g White 1544 0.08 0.52 0.20 0.28
8 Rhemtulla and Tucker-Drob (2012) SEM Achievement White 320 0.11 0.37 0.63 0.00
9 Hart et al. (2013) Falconer's Achievement White 465 0.10 0.80 0.02 0.18
10 Woodley of Menie et al. (2015) Falconer's IQ or g White 586 0.11 0.14 0.46 0.40
11 Figlio et al. (2017) Regression Achievement White 7444 0.05 0.57 0.16 0.27
12 Figlio et al. (2017) Regression Achievement White 4747 0.07 0.59 0.18 0.24
13 Mollon et al. (2018) SOLAR IQ or g White 2347 0.07 0.72
14 Engelhardt et al. (2019) SEM IQ or g White 523 0.10 0.46 0.22 0.32
15 Pesta et al. (2019) SEM IQ or g White 4596 0.11 0.67 0.17 0.16
16 Pesta et al. (2019) SEM IQ or g White 229 0.38 0.61 0.29 0.10
3 Hodges (1976) Falconer's IQ or g Hispanic 92 0.17 0.37 0.51 0.12
9 Hart et al. (2013) Falconer's Achievement Hispanic 245 0.12 0.50 0.32 0.18
11 Figlio et al. (2017) Regression Achievement Hispanic 2313 0.10 0.72 0.07 0.21
12 Figlio et al. (2017) Regression Achievement Hispanic 1428 0.12 0.73 0.07 0.20
14 Engelhardt et al. (2019) SEM IQ or g Hispanic 226 0.17 0.66 0.00 0.34
15 Pesta et al. (2019) SEM IQ or g Hispanic 2532 0.10 0.80 0.12 0.08
16 Pesta et al. (2019) SEM IQ or g Hispanic 122 0.54 0.24 0.46 0.30
1 Scarr-Salapatek (1971) Falconer's IQ or g Black 448 0.29 0.31 0.32 0.37
2 Beaver et al. (2013) SEM IQ or g Black 2399 0.10 0.51 0.18 0.31
3 Hodges (1976) Falconer's IQ or g Black 172 0.24 0.20 0.38 0.42
4 Osborne (1980) Falconer's IQ or g Black 116 0.29 0.59 0.13 0.28
5 Scarr (1981) Falconer's IQ or g Black 154 0.24 0.48 0.11 0.41
6 Scarr et al. (1993) Falconer's IQ or g Black 42 0.44 0.52 0.20 0.28
7 Beaver et al. (2013) SEM IQ or g Black 542 0.20 0.45 0.20 0.34
9 Hart et al. (2013) Falconer's Achievement Black 167 0.16 0.89 0.00 0.11
10 Woodley of Menie et al. (2015) Falconer's IQ or g Black 10 0.85 0.94 0.00 0.06
11 Figlio et al. (2017) Regression Achievement Black 2904 0.09 0.56 0.12 0.32
12 Figlio et al. (2017) Regression Achievement Black 1789 0.11 0.48 0.20 0.32
13 Mollon et al. (2018) SOLAR IQ or g Black 970 0.14 0.61
14 Engelhardt et al. (2019) SEM IQ or g Black 72 0.30 0.13 0.45 0.42
15 Pesta et al. (2019) SEM IQ or g Black 3544 0.09 0.81 0.12 0.07
16 Pesta et al. (2019) SEM IQ or g Black 648 0.29 0.62 0.07 0.31
9 Hart et al. (2013) Falconer's Achievement Asian/Other 68 0.40 0.24 0.22 0.54
14 Engelhardt et al. (2019) SEM IQ or g Asian/Other 48 0.42 0.38 0.27 0.36
14 Engelhardt et al. (2019) SEM IQ or g Multi- racial 62 0.48 0.43 0.00 0.57
8 Rhemtulla and Tucker-Drob (2012) SEM Achievement Non- White 205 0.15 0.35 0.65 0.00
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ethnic subsamples in each main sample had (1) comparable ages, (2)
ACE estimated the same way, and (3) taken the same cognitive tests.

3.3. Publication bias analysis

Publication bias is of paramount concern when conducting a meta-
analysis. Bias exists when the meta-analyzed set of articles in some
research domain fails to adequately represent the entire set of studies
(published or not) in that domain. It may arise, for example, when
studies finding some particular outcome are rejected more so than are
other studies without the finding. Consequently, when publication bias
exists, effect sizes derived via meta-analysis will over- or underestimate
the true effect size. In testing for publication bias, we selected the
random effects model and included funnel plots, Begg and Mazumdar’s
test (Begg & Mazumdar, 1994), Egger’s test, and Duval and Tweedie’s
trim-and-fill method. Our analytic choices are detailed in the SM file.

3.4. Additional analysis

The Scarr-Rowe hypothesis predicts that d values will be positively
correlated with heritability differences (Δh2). Specifically, when d va-
lues are large, lower (higher) scoring populations should also show
lower (higher) test heritabilities. We examined this prediction by
looking at the correlation between d and Δh2 across samples. We did so
via four separate analyses. First, we used all pairs of d and Δh2 esti-
mates, with the first group being the higher-scoring group. Next, we
looked at the associations between d and Δh2 for White-Black, White-
Hispanic, and Hispanic-Black comparisons. Other group pairings (e.g.,
White-multiracial) had too few samples (k ≤ 2), so analyses were not
possible. For these group comparisons, we instead weighted the data
points by the pooled standard error of h2, computed using the
Satterthwaite Approximation. However, these results may not be ro-
bust, owing to possible confounding factors between samples (e.g., age
differences). Therefore, as an alternative approach, we looked at the
relation between d and Δh2 within samples. Only three samples had a
reasonable number of subtests (i.e., five or more), and so this analysis
was limited to these three samples.

4. Review of studies and samples

The Supplement Material file contains a short review of each
sample.

5. Meta-analytic results

5.1. Meta-analysis of ACE estimates

Meta-analytic results for the summary estimates appear in Table 3.
Columns one through five, respectively, show the (1) various groups,

(2) number of data points (K), (3) mean meta-analytic values of A, C,
and E (rho2), respectively, and (4) percentage of variance in the meta-
analytic data points explained by sampling error (% var). The table
shows that all heritabilities are moderate to high, except for those in the
“Asian/Other” and “Non-White” categories. Estimates for these cate-
gories, however, were based on only one or two samples of data, with
correspondingly high standard errors. The table also shows that almost
all values of C and E are substantially smaller than are the values of A.

5.2. Meta-analysis of matched groups

We analyzed all samples in Table 3. The estimates, however, are not
directly comparable because the groups differed in terms of the samples
in which they participated. For example, “Asian/Other” appeared in
only two, relatively small samples; whereas, Whites appeared in all 16
samples. Table 4 shows analyses on matched groups (e.g., Whites and
Blacks from the same study). These analyses comprised five compar-
isons: Whites versus Blacks, Whites versus Hispanics, Whites versus
Asians/others, Whites versus multiracials, and Whites versus non-
Whites. The design here is strong, as the groups are matched on several
background variables. In each comparison we first meta-analyzed all
data points (e.g., all 30 heritabilities of Blacks and Whites), and then we
meta-analyzed the data points by the racial/ethnic group in the com-
parison (e.g., all 16 data points for Whites, plus all 16 data points for
Blacks). This allowed us to compute differences between the meta-
analytic estimates of the A, C, and E (denoted as Δrho2) for each racial/
ethnic group.

Almost all the Δrho2 values are trivial or small, especially for those
in Table 4 with a reasonable number of comparisons between samples
(i.e., five or more): White-Black (Δrho2 = −.02, 15 comparisons),
White-Hispanic (Δrho2 = −.13, seven comparisons), White-Asian/
other (Δrho2 = .32, two comparisons), White-multiracial (Δrho2 = .03,
one comparison), and White-non-White (Δrho2= .02, one comparison).
Note that Scarr hypothesized a lower value of A for Hispanics relative to
Whites. Here, however, the value of A is higher for Hispanics. More-
over, given the Scarr-Rowe hypothesis, one would expect a higher value
of A for Asians relative to Whites, since Asians score better than Whites
on IQ tests in the USA and since they also scored higher in the two
samples we had data on. In earlier generations when Whites had higher
social status (but still had lower test scores), Asians should have had
lower heritabilities. We find a lower value of A for Asians relative to
Whites. In sum, virtually no support exists for the Scarr-Rowe hypoth-
esis as applied to race in the present data.

One could consider these differences in light of the effect originally
reported by Turkheimer, Haley, Waldron, D’Onofrio, and Gottesman
(2003). When treating SES as a dichotomous variable, Turkheimer et al.
(2003) reported that the low SES group had a h2 of .10 while the high
SES group had a h2 of .72. This represents a large effect by conventional
standards. We find nothing like this in the present meta-analysis. Ra-
ther, our results are more in line with a recent meta-analysis of the
Scarr-Rowe effect on SES, which showed little to no overall effect
(Tucker-Drob & Bates, 2016), at least outside of the USA. Alternatively,
one could compare the effects here to those that exist between age
groups. Plomin et al. (2014, p. 202) reported that heritability increases
significantly from approximately 40% in childhood to 80% in late
adulthood. This ΔA represents a medium-sized effect, which we do not
see here in the context of differences between self-identified racial/
ethnic groups.

In almost all analyses, a very small amount of variance between data
points was explained by sampling error. However, only the comparisons
between Whites and Blacks have enough data points to allow for ex-
ploratory moderator analyses. We thus tested age, method, and mea-
sure as moderators for these groups. In the Schmidt and Hunter (2015)
approach to testing for moderators in a meta-analysis, two things are
taken into consideration. First, do the meta-analytical outcomes (meta-
analytical correlations or meta-analytical means or other outcomes)

Table 3
Meta-analytic ACE outcomes for combinations of matched and unmatched
groups by race/ethnicity.

SIRE A C E

K rho2 % var. K rho2 % var. K rho2 % var.

All groups 42 .60 2.02 40 .17 9.87 40 .23 9.74
White 16 .58 2.31 15 .20 7.61 15 .24 14.73
Black 15 .60 2.00 14 .15 26.69 14 .25 7.14
Hispanic 7 .73 2.28 7 .11 13.91 7 .17 13.36
Asian/Other 2 .30 306.6 2 .24 2,569 2 .47 137.04
Multi-racial 1 .43 n.a. 1 .00 n.a. 1 .57 n.a.

Non-White 1 .35 n.a. 1 .65 n.a. 1 .00 n.a.

Note. K = number of data points; rho2 = mean meta-analytic value of, re-
spectively, A, C, and E; % var = percentage of variance in the meta-analytic
data points explained by sampling error.
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differ substantially when comparing subsets of the data? Second, does
sampling error explain substantially more variance between the data
points in the subsets than in all the data points in the meta-analysis?
When both these outcomes are found, it is concluded there is a clear
moderator in the meta-analysis.

Regarding Blacks, the effect sizes for A are slightly larger for studies
with SEM in comparison to studies not using SEM, and also for younger
children compared to older children. In contrast, these effects are not
found for Whites. Also, the amount of variance between data points
explained by sampling error does not increase systematically in com-
parison to the amount of variance in the analyses of all 30 data points.
So, for A, we found no evidence of moderator effects. Very little support
exists for the existence of moderators for C. This is also true for the
analyses on the White samples for E. However, the Black samples for E
show quite small differences in effect sizes between the subgroups for
age and method used (SEM versus not SEM), but the amount of variance
between the data points explained by sampling error does not increase
systematically. Taken together, the data do not show clear evidence of
moderator effects. An obvious limitation here is that the number of data
points in several of the comparisons was quite modest.

5.3. Publication bias

The analyses for publication and experimenter bias were carried out
via a random effects model. We conducted the analyses using both N
and the standard error. Moreover, we tested for experimenter bias using
the trim-and-fill method which lets us choose the direction of the
biasing effect (i.e., left or right of the inverted funnel). Fig. 2 shows the
funnel plots for A, C, and E, respectively. The plot for A shows a hole on
the left of the distribution, for the smaller studies, which indicates some
experimenter bias. The plot for C shows a symmetrical distribution, and
so there is no indication of publication bias. In the plot for E, there is a
hole in the right of the distribution for the smaller studies, which in-
dicates some experimenter bias.

Table 5 shows the outcomes of three additional tests of publication
bias. The analyses show almost no sign of bias for either the Egger or
the Begg tests, and at best only negligible effects using the trim-and-fill
method in the case of E. Thus, all these tests combined show no in-
dication of even a small amount of publication bias.

There is no conflict between these three outcomes and those derived
when visually inspecting the funnel plots. This is because the missing
values at the left or the right of the funnel plot for A and E occur almost
only at the level of the smaller samples, so there are quite a few large
studies in the meta-analytic database which dwarf the influence of the
smaller studies. We conclude that overall there is no clear proof of
publication bias, including an absence of clear proof for experimenter
bias. Repeating the publication-bias analyses using SE instead of N leads
to the same general conclusion.

5.4. Heritability × Group differences

The Scarr-Rowe hypothesis predicts that d values will be positively
correlated with heritability differences. The specific prediction is that
when d values are large, lower scoring populations should also show
lower test heritabilities. We examined this prediction by looking at all
samples together (e.g., White-Black, White-Hispanic, and Hispanic-
Black). Surprisingly, given only small differences between groups in
heritability, Δh2 was consistently positively associated with d. The
correlations for all pairs (higher-scoring groups minus the lower-
scoring) were: r = .59 (N = 40; regression equation: d = .64 + .52
Δh2); White-Black, r = .98 (N = 15; regression equation:
d = 0.85 + 0.85 Δh2); White-Hispanic, r = .76 (N = 7; regression
equation: d = .66 + .31Δh2); Hispanic-Black, r = .64 (N = 7; re-
gression equation: d = .31 + .18 Δh2). Note, for these analyses, we
weighted values by the Satterthwaite approximation of the pooled error
for heritability.

This pattern of correlations may represent a Scarr-Rowe effect of
sorts. However, the pattern does not support the typical Scarr-Rowe

Table 4
Meta-analytic ACE outcomes for matched groups by race/ethnicity.

SIRE A C E

K rho2 Δrho2 % var. K rho2 Δrho2 % var. K rho2 Δrho2 % var.

Whites vs Blacks 30 .59 -0.02 2.13 28 .18 0.05 14.12 28 .25 -0.01 10.08
Whites 15 .58 2.25 14 .20 10.62 14 .24 17.21
Age ≤ 11 6 .58 2.45 6 .18 10.31 6 .22 20.60
Age ≥ 12 9 .57 2.17 8 .22 11.66 8 .26 24.99
SEM 5 .58 2.88 5 .21 21.00 5 .21 14.15
Not SEM 10 .57 2.09 9 .18 8.75 9 .26 31.10
IQ or g 12 .58 2.00 11 .23 11.88 11 .23 15.96
Achievement 3 .59 5.56 3 .16 26.01 3 .26 48.98
Blacks 15 .60 2.00 14 .15 26.69 14 .25 7.14

Age ≤ 11 6 .64 0.94 6 .14 21.84 6 .22 3.90
Age ≥ 12 9 .51 12.00 8 .22 11.66 8 .33 196.14
SEM 5 .66 0.90 5 .21 21.00 5 .20 4.19
Not SEM 10 .53 6.81 9 .17 26.89 9 .32 59.58
IQ or g 12 .62 1.70 11 .16 26.96 11 .22 7.35
Achievement 3 .54 5.35 3 .15 26.83 3 .31 34.41
Whites vs Hispanics 14 .64 -0.13 2.23 14 .15 0.06 13.48 14 .22 0.06 11.53
Whites 7 .60 3.91 7 .17 22.15 7 .23 14.23
Hispanics 7 .73 2.28 7 .11 13.91 7 .17 13.36

Whites vs Asians/others 4 .59 0.32 4.38 4 .14 -0.11 34.45 4 .28 -0.22 33.22
Whites 2 .62 2.67 2 .13 19.71 2 .25 36.35
Asians/others 2 .30 306.6 2 .24 2,569 2 .47 137.04

Whites vs Multi-Racial 2 .46 0.03 2,533 2 .20 0.22 69.52 2 .35 -0.25 45.11
Whites 1 .46 n.a. 1 .22 n.a. 1 .32 n.a.
Multi-racial 1 .43 n.a. 1 .00 n.a. 1 .57 n.a.
Whites vs non-Whites 2 .36 0.02 3,033 2 .64 -0.02 1,414 2 .00 0 n.a.
Whites 1 .37 n.a. 1 .63 n.a. 1 .00 n.a.
Non-Whites 1 .35 n.a. 1 .65 n.a. 1 .00 n.a.

Note. K = number of data points; rho2 = mean meta-analytic value of, respectively, A, C, and E; Δ rho2 = White rho2 minus non-White rho2; % var = percentage of
variance in the meta-analytic data points explained by sampling error.
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interpretation that differences are due to a lack of “nourishing en-
vironmental experiences” (Tucker-Drob & Bates, 2016, p. 1). This can
be seen by looking at the ds when delta h2 = 0. This value is the point
where “environmental equality” and “equal opportunity for mobility”

(Selita & Kovas, 2019) are indicated. Based on the regression equations,
setting Δh2 to zero, the d values were: All pairs, d = .64, White-Black,
d = .85, White-Hispanic, d = .66, and Hispanic-Black, d = .31. This
pattern emerged perhaps because lower-scoring groups (about as often

Fig. 2. Funnel plots of precision by Fisher’s Z for A, C, and E, respectively. The x-axis shows Fisher’s Z and the y-axis shows precision, measured as the inverse of the
standard error.
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as not) had higher heritabilities, relative to higher-scoring groups.
We next looked at the relationship between Δh2 and d values within

samples. First, we identified three samples (see Table 6) that had a
reasonable number of subtests (i.e., five or more). We then ran the al-
ternative analysis on these samples. Table 6 shows correlations between
Δh2 and d for each of these three samples (along with the regression
equations). The results are inconsistent. The r (Δh2 × d) was positive
only with the Scarr (1981) data. On the other hand, results for r (h2 ×
d), a prediction of a hereditarian model (Jensen, 1998), were also in-
consistent, as also shown in Table 6. This is despite high correlations
between d and g (rs = .65, .61, and .92) and modest ones between g and
h2average(rs = .35, .79, and .43) for Osborne (1980), Scarr (1981), and
Mollon et al. (2018). respectively.

6. Conclusion

We examined whether Scarr-Rowe interactions for race/ethnicity
exist using a meta-analytic sample composed of Blacks, Whites,
Hispanics, Asian/others, multiracials, and (non-specified) non-Whites
from the United States. We tested the Scarr-Rowe hypothesis, which
predicts that the heritability of intelligence will differ across these
groups because of relative differences in the quality of each’s environ-
ment. Our meta-analysis revealed that heritabilities were moderate to
high for the major groups (Blacks, Whites, and Hispanics). We also
found that genes accounted for about half of the IQ variance across
groups, while shared and nonshared environmental effects explained
the other half. Since the average age across samples was 15 (range of
sample averages: 4 to 61; mean: 15; median: 12), our findings are
consistent with those reported by Plomin et al. (2014). Additionally,
there is no clear proof of publication bias or experimenter bias. It is
possible that sometimes researchers simply do not submit manuscripts
that do not support their hypothesis, but there is no proof for that in
these studies.

Regarding the Scarr-Rowe hypothesis, we found that ethnic groups
did not substantially differ in the heritability of intelligence (White-
Black: Δh2 = −.02, 15 comparisons; White-Hispanic: Δh2 = −.13, 7
comparisons; White-Asians/others: Δh2 = .32, 2 comparisons; Whites-
multiracial: Δh2 = .03, 1 comparison; and Whites-non-Whites:
Δh2 = .02, 1 comparison). This was despite moderate to large cognitive
differences between some of the groups (e.g., White-Black mean
d= .83 and White-Hispanic mean d= .60. Moreover, when we did find

a non-trivial difference it was in the “opposite” direction from that
predicted by Scarr-Rowe. For example, Hispanics had higher A values
than Whites despite lower cognitive scores; Asians/others had lower A
values than Whites, despite higher cognitive scores. In sum, the claim
that the “heritability of intelligence, although never zero, is markedly
lower among American children raised in poverty, at least with regard
to less affluent “socially defined racial groups” (Turkheimer et al.,
2017), is not supported.

A caveat is in order regarding whether the Scarr-Rowe interaction
actually exists. When we looked across samples, we found evidence
consistent with the interaction. Specifically, differences in within-group
heritability covaried with the magnitude of the observed cognitive
differences. However, evidence was lacking when we looked at the
association in samples for which there were multiple subtests. What
explains the differences we found when looking across versus within
samples? The samples with multiple subtests generally did not result in
precise h2 estimates, at least judging from the reported standard errors.
Across samples, however, several confounds existed, such as differences
in age, methods of estimated h2, and differences in cognitive measures.
Regardless, even when looking across samples, the effect sizes for IQ
differences were medium-to-large at the point in the regression plots
where heritability was equal between higher- and lower-scoring races/
ethnicities.

While Turkheimer et al. (2003) reported a Heritability × SES in-
teraction for intelligence, they did not find a significant Heritability ×
Race/Ethnicity interaction (Turkheimer, personal communication, Oc-
tober 4, 2013). The same phenomena of an ACE × SES, but not an ACE
× Race/Ethnicity interaction was found both in the Early Childhood
Longitudinal Study (ECLS) analyzed by Rhemtulla and Tucker-Drob
(2012) and in the Add Health sample analyzed by Beaver et al. (2013),
Schwartz (2015), and others (Cf. Guo & Stearns, 2002). These results
are consistent with the Δh2 for SES contrasted with race, as found by
Scarr-Salapatek (1971; see also Hart et al., 2013). Why this is the case is
not clear. Regardless, we conclude that ACE × SES interactions, when
found, are not being driven by ACE × Race/Ethnicity interactions and,
as well, do not elicit ACE × Race/Ethnicity interactions.

Many researchers argue that heritability is an index of fairness in
some sense. Various authors have labeled it as an indicator of “social
justice” (Scarr, 1995), “equality of educational opportunity” (Krapohl
et al., 2014), “equity” (Colodro-Conde, Rijsdijk, Tornero-Gómez,
Sánchez-Romera, & Ordoñana, 2015), “equality of opportunity and

Table 5
Outcomes of publication bias analyses and experimenter bias analyses for A, C, and E.

Datasets analyzed Egger Begg Trim-and-fill

Significance Bias Significance Bias Directiona Number Observed Adjusted Bias

A .09 No .55 No Left 0 No
Right 2 −.04 −.04 No

C .38 No .74 No Left 0 No
Right 3 .06 .06 No

E .01 Yes .21 No Left 0 No
Right 7 .03 .04 Yes

a Direction indicates whether missing studies are expected at the right or the left side of the distribution. Directions in bold indicate where missing studies are
expected in case of experimenter bias. The analyses are based on the sample size.

Table 6
Correlations between Δh2 and d for samples with multiple (≥ 5) subtests given at the same time.

Study Nh Subtest N r (Δh2× d); (Regression Eq.) r (h2 × d)

Osborne (1980) 334.71 12 −.26; (d = 0.64 − 0.35 Δh2) −.11
Scarr (1981) 354.26 5 .87; (d = 0.70 + 0.96 Δh2) .18
Mollon et al. (2018) 2745.36 15 −.23; (d = 0.40 − 0.50 Δh2) .50
All subtests Unweighted 32 −.33; (d = 0.53 − 0.35 Δh2) .44

Note: Nh is the harmonic N of the two samples’ harmonic N for kinship pairs. Subtest N is the number of subtests.
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meritocracy,” (Rimfeld et al., 2018), “environmental equality” (Selita &
Kovas, 2019) or “social mobility” (Selita & Kovas, 2019). The reasoning
is that when heritability is high, little room may exist for “environ-
mental differences that convey privilege or privation” (Rimfeld et al.,
2018, p. 270). Likewise, “where access to quality education is the pri-
vilege of the rich, differences in academic outcomes are largely due to
socioeconomic disparities” (Selita & Kovas, 2019, p. 20).

Moreover, according to Scarr-Salapatek’s (1971) environmental
disadvantage hypothesis, groups with lower intelligence (due to being
exposed to cognitively depressing environments) should exhibit atte-
nuated heritabilities. This follows because “both [the environmental
disadvantage and genetic difference hypotheses] make differential
predictions about the proportions of genetic and environmental var-
iance in IQ within lower and higher social class groups” (Scarr-
Salapatek, 1971, p. 1286).

By the above logic, if racial/ethnic group differences in cognitive
ability are due to poorer-quality environments, these groups should
show lower heritabilities relative to people raised in more stimulating
environments (i.e., the Scarr-Rowe interaction for race/ethnicity).
While it is not always explicitly stated in the literature, by the same
logic, the finding of similar heritabilities across advantaged/dis-
advantaged groups supports the genetic difference hypothesis (see, e.g.,
Jensen, 1968; Scarr-Salapatek, 1971; Selita & Kovas, 2019)

Our general findings are at odds with the predictions of Scarr-
Salapatek’s (1971) environmental disadvantage hypothesis. Scarr-
Salapatek (1971) predicted that lower-scoring racial/ethnic groups
would have substantially weaker genotype-phenotype correlations
(heritabilities) than higher-scoring ones. It was assumed that the en-
vironmental factors causing the cognitive disadvantages would at-
tenuate the genotype-phenotype correlations in the disadvantaged
groups. The finding of similar genotype-phenotype correlations across
groups could be because the alternative genetic hypothesis is correct.
Alternatively, the results may imply that the general model’s key pre-
diction is incorrect. Perhaps “environmental disadvantage” between
groups does not substantially lower heritability within groups, even
when those groups themselves are disadvantaged in a cognitively im-
pactful way. Given the present data, we suggest a re-evaluation of the
Scarr-Rowe hypothesis. Proponents of the Scarr-Rowe hypothesis
should try to model their predicted effects regarding group differences
more explicitly.

Our results are relevant to the interpretation of the trans-ethnic
predictive accuracy of education and intelligence polygenic scores. The
predictive accuracy of polygenic scores is a function of both the validity
of the scores and the within-group heritability of the traits in question.
Rabinowitz et al. (2019) has shown that European polygenic scores
weakly (and often insignificantly) predict African-American test scores
(see, also, Lasker, Pesta, Fuerst, & Kirkegaard, 2019). They suggest that
the attenuation relative to European samples could be due to the de-
pressed heritability of cognitive ability among African Americans. The
authors also cite Turkheimer et al.’s (2003) study which did not find
heritability differences by race despite there being differences in SES by
race. While this conjecture is reasonable (and could be explored with
respect to other traits like education or social status attainment), our
results indicate that the within-group heritability of cognitive ability is
not depressed among African Americans. This suggests that the atte-
nuated association for European-derived PGS is not likely to be due to a
Scarr-Rowe interaction.

Our study has several limitations. These include: a limited number
of studies, and only studies from the United States. In the future, new
studies should be added to an updated meta-analysis. The research
program begun by Scarr-Salapatek (1971) and popularized by
Turkheimer et al. (2003) is a worthwhile endeavor. To advance the
aims of this, in addition to SES, researchers are encouraged to publish
heritability data by ethnicity, race, and culture.

In conclusion, our meta-analysis reveals that the heritability of
cognitive ability is generally moderate to high for Whites, Blacks, and

Hispanics in the United States. The other groups featured here (e.g.,
Asians) had sample sizes that were too small to allow making strong
conclusions. We also found that differences in heritability across these
three groups were mostly trivial. Nonetheless, we cannot rule out the
existence of modest differences in population parameters in our ana-
lyses. We can, however, conclude that the correlations between phe-
notype and genotype are essentially the same for Whites, Blacks, and
Hispanics residing in the USA.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.intell.2019.101408.
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