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Genetic evidence of assortative mating in humans
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of Anthropometric Traits (GIANT) consortium‡, Sarah E. Medland11, Nicholas G. Martin11,  
Patrik K. E. Magnusson12, William G. Iacono5, Matt McGue5, Kari E. North3,​13, Jian Yang1,​14 and  
Peter M. Visscher1,​14*​

In human populations, assortative mating is almost univer­
sally positive, with similarities between partners for quantit­
ative phenotypes1–6, common disease risk1,3,7–10, behaviour6,11,  
social factors12–14 and personality4,5,11. The causes and genetic 
consequences of assortative mating remain unresolved 
because partner similarity can arise from different mecha­
nisms: phenotypic assortment based on mate choice15,16, 
partner interaction and convergence in phenotype over  
time14,17, or social homogamy where individuals pair accord­
ing to social or environmental background. Here, we present 
theory and an analytical approach to test for genetic evidence 
of assortative mating and find a correlation in genetic value 
among partners for a range of phenotypes. Across three inde­
pendent samples of 24,662 spousal pairs in total, we infer 
a correlation at trait-associated loci between partners for 
height (0.200, 0.004 standard error, SE) that matched the 
phenotypic correlation (0.201, 0.004 SE), and a correlation at 
trait-associated loci for BMI (0.143, 0.007 SE) that was sig­
nificantly lower than the phenotypic value (0.228, 0.004 SE). 
We extend our analysis to the UK Biobank study (7,780 pairs), 
finding evidence of a correlation at trait-associated loci for 
waist-to-hip ratio (0.101, 0.041 SE), systolic blood pressure 
(0.138, 0.064 SE) and educational attainment (0.654, 0.014 
SE). Our results imply that mate choice, combined with wide­
spread pleiotropy among traits, affects the genomic architec­
ture of traits in humans.

Under direct phenotypic assortment for a heritable trait, pairing 
of phenotypically similar individuals will increase the proportion of 
homozygous progeny, create a directional build-up of gametic phase 
disequilibria after many generations16,18–20, affect trait correlations 
between relatives16,21,22 and influence traits that are genetically cor-
related. In contrast, there are no genetic consequences in the popu-
lation if partner similarity arises by an environmental correlation 

from either social homogamy or an interaction between couples 
after pairing. Despite the fact that phenotypic similarity between 
partners for traits such as height and intelligence was first quanti-
fied over a century ago16,20,22,23, the genetic consequences of assorta-
tive mating remain unresolved, because many confounding factors 
affect partner similarity, making it difficult to distinguish among 
the different mechanisms. As elegantly summarized in the first  
ever textbook on quantitative genetics: “Assortative mating in man, 
however, probably seldom arises purely in this way [phenotypic 
resemblance as a cause of assortative mating] and caution is needed 
in applying the results to human data”24.

Studies have attempted to address this question empirically 
using classical twin designs13, finding mixed evidence for partner 
similarity due to initial choice for many phenotypes1. A number 
of recent studies have used genomic data to examine the genetic 
similarity between couples, by estimating the genome-wide shar-
ing of single-nucleotide polymorphisms (SNPs) and testing 
whether the observed correlation is greater than expected in the 
population25–27. We show here that an extremely large sample size 
would be required in order to detect a deviation from expectation  
in genome-wide sharing (Supplementary Note, Supplementary 
Figure 1), which implies that results based on SNP sharing are most 
likely to be explained by other factors28. For example, if a phenotype 
is correlated with social, cultural or ethnic status, and there is social 
homogamy, then partners will generally be genetically similar29–31, 
but this will not affect the genetic architecture of traits in the popu-
lation. A recent study of 13,068 pairs of adult male–female partners 
living in the same household found that the genotype of a person 
is correlated with the height of their partner32, with both genetic 
and environmental effects contributing to the observed phenotypic 
correlation of height between partners32. However, examining mate 
choice in a variance component framework when the data contains 
close relatives32 is unlikely to separate confounded environmental  
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and genetic factors that affect partner similarity, meaning that 
the causes and genetic consequences of assortative mating remain 
obscured (Supplementary Note). In this study, we devise an ana-
lytical framework that is unbiased by environmental confounding 
or population stratification, to estimate the genetic association 
between partners for a phenotype, allowing for a determination of 
the degree to which phenotypic similarity of mates reflects a cor-
relation among partners at trait-associated loci.

We first analysed height and body mass index (BMI) in three 
independent samples: a composite sample of 5,044 couples taken 
from a range of publicly available cohort studies; a sample of 7,780 
couples from the UK Biobank study; and a sample of 11,908 couples 
from the 23andMe research participant cohort (Supplementary 
Table 1). In all samples, we selected heterosexual couples of 
European ethnicity, and we ensured that there were no close rela-
tives within the data. We began by estimating the phenotypic cor-
relation among couples for height and BMI after accounting for age 
and sex differences in both traits. We then predicted an individual’s 
phenotype from a genome-wide genetic predictor created from 
their partner’s genotype. To create the genetic predictor, we devised 
a random-effects approach. We first re-analysed results from recent 
genetic studies of height33 and BMI34 to ensure that the samples used 
in our study were independent of the discovery samples. We then re-
estimated the SNP effects (SNPs on HapMap3) in a random-effect 
model that converts the least-squares SNP estimates into approxi-
mate best linear unbiased predictors (summary statistic BLUP, or 
SBLUP; see Methods). The SBLUP approach maximizes prediction 

  Table 2 | Phenotypic and genetic correlations among partners for BMI.

Cohort
Spousal 
pairs

Number 
of SNP 
markers

Phenotypic 
correlation among 
pairs (95% CI)

BLUP predictor 
regression  
coefficient (SE)

Estimated genetic association 
among pairs (SE) Heritability of mate choice (SE)

Male partner Female partner Male partner Female partner

Composite Sample 
of ARIC, HRS, LL 
and MCTFR cohorts

5,044 1,135,785 0.193 (0.168, 0.229) 0.997 (0.058) 0.099 (0.047) 0.080 (0.048) 0.025 (0.066) 0.001 (0.066)

23andMe research 
participant cohort

11,908 1,134,501 0.271 (0.255, 0.288) 0.880 (0.033) 0.159 (0.034) 0.215 (0.033) 0.015 (0.029) 0.063 (0.030)

UK Biobank 7,780 1,162,900 0.205 (0.170, 0.235) 0.987 (0.029) 0.117 (0.038) 0.158 (0.047) 0.030 (0.045) 0.014 (0.043)
The initial analysis was conducted in a dataset that was a composite of the Atherosclerosis in Communities (ARIC), Health and Retirement (HRS), LifeLines (LL), and Minnesota Center for Twin and Family 
Research (MCTFR) cohort studies, and the analysis was repeated in the UK Biobank and the 23andMe research participant cohort. Imputed HapMap3 SNPs were used and the number of SNPs passing 
QC in each analysis is shown. Male partner and female partner refer to the focal individual used in the analysis. BLUP, best linear unbiased predictor.

power as it creates a genetic predictor with BLUP properties35,36  
(Supplementary Figure 2). From summary statistics of the meta-
analysed genome-wide association study (GWAS), our SBLUP 
predictors for height and BMI had BLUP properties (slope of the 
regression of phenotype on genetic predictor of ~1, Tables 1,2), and 
explained 18% of the phenotypic variation of height and 8% of the 
phenotypic variation of BMI, as compared with estimates of 17% 
and 7%, respectively, obtained by using genetic predictors made 
directly from GWAS summary statistics33,34.

We subsequently estimated the regression coefficient from a lin-
ear regression of the phenotype of a female on the SBLUP genetic 
predictor of their male partner, and vice versa, within a mixed-
effects model. To further account for population stratification, we 
adjusted the genetic predictor by the first 20 principal components 
generated from genotype data prior to the analysis33,34,37. We demon-
strate by theory (Supplementary Methods) and through simulation 
(Supplementary Figures 2, 3 and 4) that if there is direct assorta-
tive mating for a phenotype, and the predictor has BLUP properties, 
then the regression coefficient from a linear regression of the pheno-
type of one partner on the genetic predictor of the other is expected 
to equal the phenotypic correlation among couples. Furthermore, 
we show by theory (Supplementary Methods) and simulation 
(Supplementary Figure 5) that indirect assortment for an unmea-
sured genetically correlated trait would also create a correlation 
among couples at trait-associated loci for the recorded phenotype, 
with the value dependent on the phenotypic and genetic correlations 
of the different phenotypes, the ratio of their heritability, and the 

Table 1 | Phenotypic and genetic correlations among partners for height.

Cohort
Spousal 
pairs

Number  
of SNP 
markers

Phenotypic 
correlation 
among pairs 
(95% CI)

BLUP predictor 
regression 
coefficient (SE)

Estimated genetic 
association  
among pairs (SE)

Heritability of mate 
choice (SE)

MLMA predictor 
regression variance 
explained (R2)

Male 
partner

Female 
partner

Male 
partner

Female 
partner

Male 
partner

Female 
partner

Composite Sample 
of ARIC, HRS, LL and 
MCTFR cohorts

5,044 1,135,785 0.200  
(0.186, 0.221)

1.082  
(0.040)

0.175  
(0.035)

0.185  
(0.034)

0.027  
(0.065)

0.044  
(0.066)

0.005 0.011

23andMe research 
participant cohort

11,908 1,134,501 0.210  
(0.193, 0.227)

1.112  
(0.022)

0.213  
(0.023)

0.220  
(0.023)

0.086  
(0.029)

0.005  
(0.029)

0.008 0.010

UK Biobank 7,780 1,162,900 0.190  
(0.180, 0.210)

1.090  
(0.020)

0.191  
(0.033)

0.192  
(0.030)

0.046  
(0.045)

0.005  
(0.044)

0.008 0.012

The initial analysis was conducted in a dataset that was a composite of the Atherosclerosis in Communities (ARIC), Health and Retirement (HRS), LifeLines (LL), and Minnesota Center for Twin and Family 
Research (MCTFR) cohort studies, and the analysis was repeated in the UK Biobank and the 23andMe research participant cohort. Imputed HapMap3 single nucleotide polymorphisms (SNPs) were used 
and the number of SNPs passing QC in each analysis is shown. Male partner and female partner refer to the focal individual used in the analysis. MLMA refers to mixed linear model association analysis of 
mate choice, and the SNP estimates gained were then used to predict height in an independent sample. BLUP, best linear unbiased predictor.
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(Table 2, Fig. 1b). The regression coefficients did not differ when 
using either the male or female partner as the focal individual 
(Tables 1 and 2; Fig. 1a and b). For both phenotypes, the regression  
coefficient was significantly different from the expectation of zero 
under only social homogamy or partner interaction (Supplementary 
Figure 3), and we demonstrate that correlation in ancestry among 
partners in our data would not drive the results we present 
(Supplementary Figure 6). For height, obtaining a genetic estimate 
equal to the phenotypic estimate under indirect assortment would 
require a combination of a partner correlation that is greater than 
0.2, for a trait that has a genetic correlation of >​0.5 with height, and 
a heritability of >​0.8, which is unlikely given that there is no evi-
dence for a trait fitting these criteria. Therefore, our results suggest 
that there is direct assortative mating on height across all studies. 
For BMI, there may be indirect assortment on a genetically cor-
related trait, or there may be a combination of direct assortment 
and environmental factors that lead to phenotypic similarity among 
partners. For example, couples may additionally converge in phe-
notype over time, creating a mismatch in phenotypic and genetic 
estimates. Regardless of the mechanism, we find evidence of assort-
ment at height- and BMI-associated loci implying gametic phase 
disequilibrium at those loci in the human population.

We estimated the heritability (h2
SNP) associated with common 

SNPs for realized phenotypic mate choice in unrelated individuals, 

degree of partner assortment (Supplementary Methods). Therefore, 
our approach provides a direct estimate of the correlation among 
couples at trait-associated loci but cannot differentiate between 
direct assortment on a phenotype and assortment on a genetically 
correlated trait. However, our approach does differentiate between 
assortative mating based on selection of phenotypic characteristics 
and assortative mating based on shared social or environmental fac-
tors, because under only social/environmental homogamy we would 
not expect an association between genetic predictors of phenotype 
within the mixed-effect model of equation (1). This is because the 
equation accounts for population stratification, both by regressing 
principal components from the genetic predictor, and by fitting a 
relationship matrix estimated from the SNP markers.

We find evidence for a genetic basis of assortative mating for 
both height and BMI in all samples (Tables 1,2, Fig. 1). Across all 
samples, the meta-analysed phenotypic correlation among partners 
was 0.201 for height (0.004 SE) and 0.228 for BMI (0.004 SE; Tables 
1,2, Fig. 1). For height, the meta-analysed value of the regression 
coefficient from a linear regression of the SBLUP genetic predic-
tor of males and the phenotype of their female partner, and vice 
versa (meta-analysed value 0.200 with SE of 0.007, Table 2, Fig. 1a), 
did not significantly differ from the phenotypic correlation. For 
BMI, the meta-analysed estimate of the regression coefficient was 
0.143 (0.007 SE), which was lower than the phenotypic correlation 
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Figure 1 | Assortative mating for height and BMI creates a correlation at trait-associated loci among partners. In blue (N =​ 5,044 couples) are the  
results of analysis conducted in a dataset that was a composite of the Atherosclerosis in Communities, Health and Retirement, LifeLines, and Minnesota 
Center for Twin and Family Research cohort studies. The analysis was repeated in the UK Biobank (cyan, N =​ 7,710) and 23andMe research participant 
cohort (green, N =​ 11,908), and then the results were meta-analysed (grey). a,b, The phenotypic correlation among spousal pairs is shown, after correcting 
for age and sex differences. ‘Male focal’ and ‘female focal’ refer to the focal individual used in the analysis to estimate the genetic association among 
partners for height (a) and BMI (b), with the combined meta-analysis value across studies in grey. c,d, Trait refers to the SNP heritability for height (c) 
and BMI (d), in males, females, and meta-analysed across sexes and studies. From the meta-analysis value, a theoretical expectation was derived for the 
heritability estimate gained when treating the phenotype of an individual’s partner as the phenotype of that individual, and then partner phenotype refers 
to those estimates gained from the data. Error bars give the SE of the estimates.
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by treating an individual’s partner’s phenotype as their own, and 
we tested this estimate against a derived theoretical expectation  
(Supplementary Methods, Supplementary Figure 7). The meta-
analysed estimate of h2

SNP for height was 0.559 (0.012) and that for 
BMI was 0.243 (0.012) across samples, with no evidence for sig-
nificant differences among samples or sexes (Fig. 1d). Using these 
meta-analysis estimates and the phenotypic partner correlations, 
we calculated expectations of the h2

SNP for realized phenotypic 
mate choice of 0.023 for height and 0.016 for BMI (Supplementary 
Methods and Supplementary Figure 7). The estimates of h2

SNP for 
partner phenotype were not significantly different from their 
expectation, giving meta-analysis values of 0.030 (0.012) for height 
and 0.026 (0.012) for BMI (Tables 1,2, Fig. 1c and d). Finally, we 
conducted a mixed linear model association analysis of assorta-
tive mating for height, in which we tested for associations between  
the phenotype of an individual and the genotype of their partner.  
We created a genetic predictor from the SNP estimates gained  
from this analysis and used this to predict height in an independent 
sample of individuals from the combined cohorts that were not part 
of, or related to, the couples used in the analysis (Supplementary 
Table 1). The genetic predictor generated from the SNP results of 
the composite sample was significantly associated with height in 
the independent prediction sample (Table 1, prediction R2 =​ 0.011, 
p <​ 2 ×​ 10−16 for the female focal analysis; prediction R2 =​ 0.005, 
p <​ 4 ×​ 10−6 for the male focal analysis), and this result was repli-
cated in both the UK Biobank and 23andMe samples (Table  1). 
These results also conformed to our expectation from theory and 
simulation (Supplementary Methods and Supplementary Figure 8). 
Taken together, these analyses suggest that the same loci underlie 
the trait and assortment on the trait, and provide further support 
for a correlation among partners at height- and BMI-associated loci.

We then extended our analysis to a range of phenotypes in the 
UK Biobank study. Of the 7,780 couples identified using household 
information (see Methods) with both phenotypic and genotypic 
data, all had measures of educational attainment (years), 4,323 had 
measures of bone mineral density, 7,773 had measures of waist-to-
height ration (WHR) and 7,173 had measures of blood pressure. 
We corrected the phenotypes for age and sex differences and stan-
dardized to a z-score before estimating the phenotypic correlation. 
To estimate the genetic association, we reanalysed summary statis-
tics from recent genetic studies38–41 to create SBLUP statistics, and 
we then predicted an individual’s phenotype from a genome-wide 
SBLUP genetic predictor created from their partner’s genotype.

We find evidence for a correlation among partners at trait-asso-
ciated loci for WHR, blood pressure and educational attainment 
(Fig. 2). In contrast, there was no evidence for either a phenotypic 
correlation for bone mineral density, or a correlation at bone min-
eral density associated loci, among partners (Fig. 2). Our findings 
for blood pressure, WHR and BMI probably reflect assortment on 
some combination of these phenotypes, or an alternative component 
of metabolism, given previous evidence for a genetic correlation 
between metabolic syndrome traits such as BMI, WHR and blood 
pressure42. For educational attainment, the correlation at trait-asso-
ciated loci (0.654, 0.014 SE) was significantly higher than the pheno-
typic correlation (0.412, 0.011 SE). Previous studies indicate that a 
genetic predictor for educational attainment explains more variation 
in cognitive performance than educational attainment43, and provide 
evidence41,43 for a genetic correlation between educational attainment 
and cognitive performance that is higher than the phenotypic cor-
relation of ~0.5. A partner correlation of ~0.65 for an unmeasured 
trait of cognitive performance with heritability ~0.7 that has pheno-
typic correlation ~0.6 and genetic correlation ~0.8 with educational 
attainment, and a heritability for educational attainment of ~0.35, 
would result in the estimates that we obtain here (Supplementary 
Methods). We support these results by directly estimating the cor-
relation among partners for genetic predictors of both height and 

educational attainment, calculated from the ordinary least-squares 
association study estimates (Supplementary Figure S9). For educa-
tional attainment, we find that this direct estimate of the correlation 
at genetic value among partners is higher than the expected value 
given a phenotypic correlation of 0.4. In contrast, for height, the cor-
relation at genetic value among partners conforms to the expecta-
tion given a phenotypic correlation of 0.2. While these findings on 
phenotypes other than height and BMI require replication that was 
not feasible in this study, they suggest that in addition to height there 
is phenotypic assortment in the UK population on traits that are 
associated with educational attainment and metabolism that creates 
a correlation among partners at trait-associated loci.

In summary, we show that the observed similarity in height, met-
abolic traits and educational attainment between partners reflects a 
correlation at trait-associated loci to differing degrees across traits. 
For height, there is likely to be direct phenotypic assortment, which 
is why our findings support a recent study32, despite the potential for 
bias by environmental confounding in that study. Secondary assort-
ment on a genetically correlated trait probably leads to a correla-
tion at trait-associated loci for educational attainment. Finally, for 
BMI, WHR and blood pressure there may be indirect assortment 
on a genetically correlated metabolic trait, or there may be a com-
bination of direct assortment and environmental sharing that leads 
to phenotypic similarity among partners. For many phenotypes, 
shared environment probably plays a role in both phenotypic varia-
tion and mate choice. Our approach, which is free of environmen-
tal confounding, enables a direct estimation of the degree to which 
assortative mating creates a genetic correlation among partners at 
trait-associated loci for any phenotype in populations of any species.

Our results represent a snapshot of contemporary assortative 
mating in the human population, and we do not know whether mate  
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Figure 2 | Genetic evidence for assortative mating across a range of 
phenotypes in the UK Biobank study. Of the 7,780 couples identified in 
the UK Biobank with both phenotypic and genotypic data, all had measures 
of educational attainment (years), 4,323 had measures of bone mineral 
density, 7,773 had measures of waist-to-hip ratio and 7,173 had measures 
of blood pressure. We corrected the phenotypes for age and sex differences 
and standardized to a z-score before estimating the phenotypic correlation. 
To estimate the genetic association, we reanalysed summary statistics 
from recent genetic studies to create SBLUP statistics (see Methods). 
‘Male focal’ (square) and ‘female focal’ (circle) refer to the focal individual 
used in the analysis to estimate the genetic association among partners, 
and ‘sexes combined’ refers to the meta-analysed value.
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choice was historically consistent, or whether equilibrium has been 
reached. If we assume equilibrium and an equilibrium heritability 
of 0.7 for height and 0.4 for BMI44, then our estimates of the degree 
to which the phenotypic correlation reflects a correlation at genetic 
values predict that the additive genetic variance and heritability  
are inflated by 17% and 5% for height, and 7% and 4% for BMI, 
respectively, relative to a population with random mating (see  
eq. 7.19 of previous work45). For educational attainment, assum-
ing an equilibrium heritability of 0.4 implies an inflation of 27%  
and 24% for the additive genetic variance and heritability, respec-
tively. These results have implications for the interpretation of 
resemblance between relatives and for estimates of genetic para
meters in populations.

Methods
We define assortative mating to be a phenotypic assortment that creates a 
directional build-up of gametic phase disequilibria at the underlying trait 
loci15,16,18,19,45. Phenotypic assortment can be based either directly on a phenotype, 
or indirectly on the phenotype of a genetically correlated trait. We distinguish this 
from assortative mating under heterogamy/homogamy where assortment occurs 
based on the environment (culture, social status, ethnicity), which can create a 
correlation in trait value if the phenotype is correlated with these environmental 
factors. Cultural homogamy can also create a correlation in genetic similarity 
among individuals if there is correlated population stratification among couples46. 
Our aim is to control for population stratification in order to quantify assortative 
mating genome-wide for height and BMI within populations.

Data. Composite cohort sample. We used a composite sample of data across a 
number of cohort studies (Supplementary Table 1). We selected heterosexual 
couples by identifying individuals of European ethnicity who had (i) a child 
together (inferred from genotype data and/or known pedigree structure),  
(ii) SNP genotype data, and (iii) phenotype data for height and BMI. Within  
each cohort, we adjusted the phenotype for age and standardized to z-scores 
in males and females separately, which removed differences in both mean and 
variance between males and females, and across cohorts. We then removed  
any couples that contained an outlying individual with a phenotypic  
value >​7 SD from the mean.

All of the composite sample cohorts were independently imputed to a 1000 
Genomes reference panel, using identical quality control (QC) procedures  
on the initial datasets of per-SNP missing data rate of <​0.01, minor allele  
frequency >​0.01, per-person missing data rate <​0.01, and Hardy–Weinberg 
disequilibrium p-value <​1 ×​ 10−6. Imputation was performed in two stages.  
First, the target data were haplotyped using HAPI-UR. Second, Impute2 was  
used to impute the haplotypes to the 1,000-genome reference panel (release 1, 
version 3). We then extracted best-guess genotypes at common SNPs typed  
in the HapMap 3 European sample with imputation info score >​0.5. We conducted 
principal component analysis within each cohort and removed individuals  
with principal eigenvector values that were >​7 SD from the mean. We calculated 
allele frequencies within each of the cohorts and removed any SNPs with allele 
frequency differences across cohorts larger than 0.2. We then combined the  
cohorts together and conducted an additional round of QC of per-SNP missing 
data rate of <​0.01, minor allele frequency >​0.01, per-person missing data  
rate <​0.01 and Hardy–Weinberg disequilibrium p-value <​1 ×​ 10−6. Finally,  
we removed one of any pair of individuals with estimated relatedness in a genetic 
relatedness matrix (see below) greater than a threshold of 0.05. All QC was 
conducted using PLINK v1.9.

23andMe research participant cohort. We repeated our analysis using data from 
the 23andMe research participant cohort, which is drawn from the customer base 
of 23andMe, a consumer genetics company. This cohort has been described in 
detail previously47,48. Participants provided informed consent and answered survey 
questions online, under a protocol approved by the external institutional review 
board Ethical & Independent Review Services (E&I Review), which is accredited 
by the Association for the Accreditation of Human Research Protection Programs. 
Couples were selected who had at least one child in the database, and for whom 
self-reported height and weight were available. Relatives were then excluded, 
by removing one from any pair of individuals that shared more than 700 cM of 
total identity by descent. Participant genotype data were phased out of sample 
using a modified version of BEAGLE, and were then imputed in batches of 8,000 
to 9,000 individuals against the September 2013 release of the 1000 Genotypes 
Project haplotypes using Minimac2, with five rounds and 200 states for parameter 
estimation. Analyses were limited to 15.5 million SNPs with imputed R2 >​ 0.5 
averaged across all batches and R2 >​ 0.3 in every batch.

UK Biobank Sample. We repeated our analyses using data from the UK Biobank 
following a recent study32. The UK Biobank Axiom (UKBA) array from Affymetrix 

was custom-designed for the purpose of genotyping the UK Biobank participants. 
The UKBA array is being used to genotype ~450,000 of the ~500,000 UK Biobank 
participants. The other ~50,000 samples were genotyped on the closely related 
UK BiLEVE (UKBL) array. The UKBA array is an updated version of the UKBL 
array that includes additional markers, which replaced a small fraction of the 
markers used for genome-wide coverage. The UKBL cohort and the rest of UK 
Biobank differ only in small details of the DNA processing stage and the two 
SNP arrays are very similar with over 95% common marker content. The ~50,000 
samples genotyped on the UKBL array are included in the interim release. After 
QC procedures have been applied (see Supplementary Methods), the interim UK 
Biobank data release contains genotypes for 152,736 samples that passed sample 
QC (~99.9% of total samples), and 806,466 SNPs that passed SNP QC in at least  
one batch (>​99% of the array content).

Imputed genotype data are provided as part of the data release. Prior to 
imputation, genotypes SNPs on the UKBA chip and UKBL chip were removed  
if (i) they were missing across multiple batches, (ii) they were multiallelic  
or (iii) they were of minor allele frequency, <​1%. 1,037 sample outliers were 
also removed. These filters resulted in a dataset with 641,018 autosomal SNPs in 
152,256 samples. The result of the imputation process using a merged reference 
panel from the UK10K and 1000 Genomes data (Supplementary Methods)  
is a dataset with 73,355,667 SNPs, short indels and large structural variants in 
152,249 individuals. Selecting out only SNPs with imputation ‘info score’ >​0.3 
and minor allele count >​ =​ 5 gives ~40M SNPs in 152,249 individuals. Principal 
component analysis and the self-declared ethnicity were used to derive a ‘White 
British’ subset of samples. In addition, samples were excluded if they had (i) at 
least one identified closely related sample (r >​ 0.1); (ii) a genetically inferred sex 
that did not match the self-reported gender; (iii) ~500 extreme heterozygosity or 
missing genotype outliers. These filters resulted in a dataset with 112,338 samples, 
and further exclusion of one individual from a pair with an estimate SNP marker 
relatedness greater than 0.05 using GCTA (Supplementary Methods) resulted in a 
final sample of 108,042 samples. We then selected out 1,162,900 HapMap3 SNPs. 
BMI and height were recorded for every individual, and we selected only the first 
recorded measures. We then adjusted both phenotypes for age (factor with levels 
for each age between 40 and 73) and sex differences. BMI and height phenotypes 
5 SD away from the mean were not included in the analyses. Both phenotypes  
were then converted to z-scores with zero mean and variance of 1.

From this set of 108,042 individuals, we used household sharing information  
to identify pairs of individuals who were less than 10 years apart in age, who  
both reported living with their spouse, in the same location, for the same length  
of time, with the same number of people in their household, and who had  
parents of different ages. This provided a set of 7,780 couples with complete  
height, BMI and genotype data. From these couples, 4,323 couples had complete 
bone mineral density data (UK Biobank unique data identifier 3148.0.0),  
7,773 had measures of WHR (UK Biobank unique data identifier 48-0.0 and 
49-0.0), 7,173 had measures of blood pressure (UK Biobank unique data  
identifiers 4079-0.0 and 4080-0.0) and all 7,780 had reported their educational 
attainment (UK Biobank unique data identifier 6138-0.0). We converted 
educational attainment to a continuous yearly measure as in a previous study41.  
We then adjusted the phenotypes for age (factor with levels for each age  
between 40 and 73) and sex differences, removed individuals 5 SD away  
from the mean, and standardized the phenotype to a z-score with zero mean  
and variance of 1.

Statistical analysis. Phenotypic correlation. We began by estimating the phenotypic 
correlation among couples for all phenotypes after accounting for age and sex 
differences in both traits.

Approximate best linear unbiased genetic predictor. We predicted an individual’s 
phenotype from a genome-wide genetic predictor created from their partner’s 
genotype. To create the genetic predictor, we devised a random-effect approach 
(Supplementary Methods). We first re-analysed results from recent genetic 
studies of height33 and BMI34 to ensure that the samples used in our study were 
independent of the discovery samples. For the extended UK Biobank analysis, we 
used results from genetic studies of bone mineral density38, systolic and diastolic 
blood pressure39, WHR40 and educational attainment41, ensuring that the UK 
Biobank sample was not included within the discovery meta-analysis. We then 
re-estimated the SNP effects (SNPs on HapMap3) in a random-effect model that 
converts the least-squares SNP estimates into approximate best linear unbiased 
predictors (summary statistic BLUP: SBLUP; Supplementary Methods). The 
SBLUP approach maximizes prediction power, as it creates a genetic predictor with 
BLUP properties35,36 (Supplementary Figure 2).

Prediction accuracy of a predictor with BLUP properties. We then estimated the 
amount of variation in height and BMI that can be explained by a predictor with 
BLUP properties. To do this, we estimated principal components of the HapMap 
3 best-guess imputed SNPs for the combined cohort and we selected the top 20 
principal components to create a ×N P matrix Z of eigenvectors across the  
P selected principal components. We then regressed the estimated genetic predictor 
onto the eigenvectors as μˆ β= + +g Z em m m and μˆ β= + +g Z ef f f  for males (m) 
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and females (f), respectively, where μ is the mean and β is a ×P 1 vector of the 
regression coefficients, and e is the residual error. We adjusted the predictors as 
ˆ ˆ β̂= −g g Zp m mm

 and ˆ ˆ β̂= −g g Zp f ff
. We then regressed the phenotypic values onto 

the adjusted genetic predictors as μ ˆ= + +y g em pm
 and μ ˆ= + +y g ef pf

, where ym and 
yf  are ×N 1 vectors and represent the phenotype for males and females, respectively. 
In the UK Biobank sample and the 23andMe cohort, the same approach was 
followed, with the top 20 principal components computed from a subset of 
genotyped SNPs47,48. This approach removes population stratification (associated 
with the leading axes of genetic variation) in the predictor, before estimating the 
amount of variation in height and BMI explained by the genetic predictor, and the 
slope of the relationship between phenotype and genetic predictor49–52. These two 
parameters are key to the later analysis.

Predicting an individual’s phenotype from the genotype of their partner. To estimate 
the degree to which assortative mating creates a genetic correlation at  
trait-associated loci, we first determined the relationship between the genetic 
predictor of males and the phenotype of their female partner, and vice versa, as:

μ μˆ ˆ= + + + = + + +y g u e y g u e; (1)m m p m m f f p f ff m

where u is an ×N 1 vector of the total genetic effects of the individuals, with 
σ= Nu A(0, )G

2 . Here, A is the genetic relationship matrix between either males 
(when estimating um) or females (when estimating uf ), with its jlth element being 

= ∑ =
− −

−
Ajl N i

N x p x p
p p

1
1

( 2 )( 2 )
2 (1 )

ij i il i

i i
 where pi is the frequency of the minor allele of the 

imputed HapMap3 common SNP i, and x is the SNP genotype (best guess for the 
combined cohort and rounded imputed diploid dosage for the 23andMe cohort). The 
genetic relationship matrix accounts for population stratification in the phenotype, as 
it is equivalent to fitting all the principal components within the model. Equation (1) 
was estimated using the GREML function in GCTA v1.25. Under different types of 
assortative mating, we derive the expectation of the regression coefficient from a 
linear regression of the phenotype of males on the genetic predictor of their female 
partners, and vice versa, in the Supplementary Methods.

Common SNP heritability of realized mate choice. We then estimated the  
heritability associated with common SNPs (hSNP

2 ) for realized mate choice of  
height and BMI as:

μ μβ β= + + + = + + +y Z u e y Z u e, (2)m m m f m f f f m f

with notation the same as above. Equation (2) controls for population  
stratification by fitting the effects of the first 20 principal components estimated 
within the 23andMe data before then estimating the effects σ= Nu A(0, )G

2 .  
We selected Hapmap3 common SNPs from the best-guess imputed SNP data to 
estimate A, and thus σG

2  is the variance explained by those SNPs. Equation (2) 
was estimated using the GREML function in GCTA v 1.25. Again, we derive the 
expectation of the regression coefficient from a linear regression of the phenotype 
of males on the genetic predictor of their female partners, and vice versa,  
in the Supplementary Methods.

Mixed linear model association analysis of realized mate choice. To identify the 
genomic regions associated with realized mate choice and test for a single genetic 
basis of the trait and mate choice, which implies direct assortment on phenotype, 
we conducted a mixed linear model association analysis53 as:

μ β μ β= + + + = + + +y X u e y X u e; (3)i im m f m m f f m f fi i

with notation the same as above, where βi is the regression coefficient, Xmi and X fi 
are ×N 1 vectors of genotypes for each SNP i =​ 1, …​, k (coded as 0, 1 or 2 defining 
the number of reference alleles), for males and females respectively, u uandm f  are 
the polygenic effects (random effect) for males and females respectively, and e is  
the residual. We selected HapMap3 common SNPs (MAF ≥​ 0.01) from the  
best-guess imputed SNP data in equation (3) as we did for equations (1) and (2). 
Equation (3) was estimated using the MLMA function in GCTA v1.25. Again,  
we derive the expectation of the regression coefficient from a linear regression  
of the phenotype of males on the genetic predictor of their female partners  
and vice versa in the Supplementary Methods54,55.

Simulation study. To support our results we conducted a simulation study using 
real genotype data that is described in full in the Supplementary Methods.

Data availability. We utilize publicly available dbGaP data from the 
Atherosclerosis Risk in Communities (ARIC) Study (dbGaP phs000090.v1.p1), 
Health and Retirement Study (HRS: dbGaP phs000428.v1.p1), and Resource  
for Genetic Epidemiology Research on Adult Health and Aging (GERA:  
dbGaP phs000674.v1.p1). We also use data from the UK Biobank which  
is a publicly available resource on request. Access to individual-level  
phenotypic, genetic and partner identity data from the 23andMe cohort, ARIC, 
TWINGENE, Minnesota Center for Twin and Family Research (MCTFR)  

and the LifeLines Study is available with the obtainment of a research agreement.  
The summary data that support the findings of the study are available  
from M.R.R. upon request.
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